University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 1: Rectangle Area

Develop a program that, given as input the cartesian coordinates of three vertices of a rectangle,
reports the area of that rectangle. You will recall that the area of a rectangle is the product of
the lengths of any two adjacent sides.

Input: The first line contains a positive integer n indicating how many rectangles are to be
analyzed. Each rectangle is described on a single line via six real numbers, x1, y1, 2, y2, T3,
and ys3, separated by spaces. These provide the coordinates of three of the rectangle’s vertices,

namely Pi(z1,y1), Po(x2,y2), and P3(x3,y3).

Output: For each rectangle provided as input, report its area.

Sample input

3

0.0 0.00.01.01.0 0.0
-1.0 2.0 3.05.01.0 1.0
5.0 9.0 -0.5 0.0 7.5 5.0

Resultant output

Area of rectangle with vertices (0.0,0.0),(0.0,1.0),(1.0,0.0) is 1.0
Area of rectangle with vertices (-1.0,2.0),(3.0,5.0),(1.0,1.0) is 10.0
Area of rectangle with vertices (5.0,9.0),(-0.5,0.0),(7.5,5.0) is 44.5

University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 2: Converting Egyptian Fractions to Fractions

A unit fraction is a fraction of the form %, where r is a (non-zero) integer. An Egyptian fraction
is a sum of distinct positive unit fractions, so called because this is the manner in which ancient
Egyptians expressed fractions in general. For example, they would have written % as % + %

(except that they would have used hieroglyphics rather than Arabic numerals).

Develop a program that, given an Egyptian fraction (i.e., a set of distinct positive unit frac-
tions), calculates the sum and expresses it in simplest (i.e., reduced) form.

Input: The first line contains a positive integer n indicating how many instances of the problem
are subsequently described. Each such instance is described on two lines, the first of which
contains a single positive integer m indicating how many unit fractions are to be summed. On
the second line appears a sequence of m distinct positive integers ki, ko, . . . , kp,, which is to be
interpreted as representing the Egyptian fraction k% + 1?12 +---+ k},b'

Output: For each Egyptian fraction given as input, your program should generate a single line
of output indicating the unit fractions that were summed (separated by plus signs), followed
by an equals sign, followed by the sum, in simplest form.

Sample input Resultant output

3 1/2 + 1/10 = 3/5

2 1/35 = 1/3b6

2 10 1/98 + 1/1 + 1/2 + 1/12 = 937/588
1

35

4

98 1 2 12

University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 3: Palindrome Trawler

A palindrome is a character string that reads the same forwards as backwards. Examples
include a, aa, abba, and fbccacchf.

Develop a program that, given a character string, identifies all its substrings of length three or
more that are palindromes.

Input: The first line contains a positive integer n indicating the number of strings that are to
be analyzed. Each such string is described on two lines, the first of which gives its length and
the second of which contains the string itself.

Output: For each string given as input, echo that string on one line and then, on subsequent
lines, list all its substrings of length three or more that are palindromes, one per line. Preceding
each such palindrome, display its starting position within the input string. (Assume that
positions are numbered beginning at 1.) The palindromes should appear in ascending order
by starting position. For multiple palindromes having the same starting position, list them in
ascending order by length. Following the last palindrome, display a blank line.

Sample Input Resultant Output
3 baabbab
7 1 baab
baabbab 3 abba
5 5 bab
bbacb
10 bbacb
aabababaab

aabababaab
aabababaa
aba
ababa
abababa
bab
babab
aba
ababa
bab
aba
baab

N O W WNNN e

University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 4: Run-length Decoding

Run-length encoding is a data compression technique that works well on data in which values
tend to repeat frequently. Such data is common in some kinds of applications, including digital
imaging. Fax machines, for example, employ this kind of compression, as does the JPEG image
encoding standard.

Within a sequence, a run is a maximal subsequence all of whose members have the same value.
(By “maximal” is meant that a run cannot be extended to include the element preceding it or
the one following it, because they have values that are different from the (common) value of
the run’s members.)

By this definition, any sequence can be split up (uniquely) into runs. Consider, for example,
this sequence S of integers:

S =3700555555429429000822208688 8 75112

Using parentheses to partition it into its runs, we get

(37)(0 0)(5 5 5 5 5 5)(429 429)(0 0 0)(8)(2 2 2)(0)(86 86 86 86)(7)(5)(1 1)(2)

The rules for performing run-length encoding (of a sequence of integers) are as follows:

(1) Any run of length three or less whose members are non-zero is left unaltered.

(2) Any run of length four or more whose members are non-zero is encoded by three numbers:
zero (which signals that a run is being encoded), followed by the length of the run,
followed by the value of each member. For example, a run of 5’s having length twelve is
encoded as 0 12 5.

(3) Any run of length two or more whose members have value zero is encoded as in (2). For
example, a run of 0’s having length three is encoded as 0 3 0.

(4) A run of length one whose member is zero is encoded as 0 0.

Following these rules, the sequence S from above is encoded as

T =37020065429429030822200048 75112

For this particular example, in which the runs are all fairly short, very little compression is
achieved. (S contains 28 values, and 7' contains almost as many, 26.)

Develop a program that does run-length decoding, by which we mean the inverse of run-length
encoding. That is, given as input the result of applying run-length encoding to some sequence,
the program should produce as output that sequence. For example, given T as input, the
program should produce S as output.

Input: The first line contains a positive integer n indicating how many sequences are to
be decoded. The next 2n lines contain descriptions of the sequences, with each description
occupying two lines. The first line of each description contains a positive integer m (no greater
than 100) equal to the length of (i.e., number of elements in) the sequence. The second line
contains m nonnegative integers comprising the sequence, separated by spaces. You may assume
that each sequence given as input is the valid run-length encoding of some sequence.

Output: For each sequence given as input, echo it on one line, display the result of run-length
decoding it on the next line, and make the next line blank.

Sample Input

10

064007171045

14
102001012340302

Resultant output

064007171045
444444071 715555

001012340302
11111111112340002

University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 5: Sudoku Verification

A Sudoku board is a 9 x 9 matrix, embedded in which are nine 3 x 3 sub-matrices, each cell
of which is either empty or contains one of the digits 1 through 9. A Sudoku board is said
to be wiable if no digit occurs more than once in any row, column, or sub-matrix. A Sudoku
board is said to be complete if it is viable and none of its cells is empty. (Hence, in a complete
Sudoku board each of the digits 1 through 9 appears exactly once in each row, column, and
sub-matrix.)

Using the terms introduced above, every Sudoku board can be classified as either complete,
incomplete but viable, or non-viable.

Develop a program that, given a Sudoku board, reports in which of these three categories it
lies. In the case of a non-viable board, the program also should identify every row, column,
and sub-matrix in which there is a violation of viability (i.e., in which some digit occurs more
than once).

Input: The first line contains a positive integer n indicating how many Sudoku boards are to
be classified. Each board is described on nine lines, one row per line. Using zero to indicate an
empty cell, each row is described by the nine digits in its cells, separated from one another by
spaces. A blank line separates each board from the next.

Output: For each board given as input, generate a single line of output that properly classifies
it. Specifically, that line should contain one of the strings complete, incomplete but viable,
or non-viable. In the case of a non-viable board, three more lines of output should be
generated, the first of which lists any rows violating viability, the second of which lists any
columns violating viability, and the third of which lists any sub-matrices violating viability.
(See sample output for correct formatting.) Rows are numbered 1 through 9 going top to
bottom, columns are numbered 1 through 9 going left to right, and sub-matrices are numbered
1 through 9 according to the following picture, in which each box represents a 3 x 3 sub-matrix.

to——t———t———+
1121 3|
to——t———t———+
| 4151 6|
to——t———t———+
71819
to——t———t———+

Resultant output

Sample input

3

complete

incomplete but viable

non-viable

123456789
456789123
789123456
234567891

rows:

columns: 2 5
sub-matrices:

6 8

1

567891234
891234567
345678912
678912345
912345678

1204067009
056709023
789123456
004060001
507090230
001030067
305070000
000900045
910040608

1204067009
016709023
789123456
004060071
507090230
001030067
305040000
000900045
910040608

University of Scranton
ACM Student Chapter / Computing Sciences Department
17th Annual High School Programming Contest (2007)

Problem 6: Counting Points in Basketball

In basketball, a free throw counts as a single point, a (normal) field goal counts as two points,
and a 3-point field goal counts (surprise!) as three points. Suppose that, as a game progresses,
we keep track of how a team scored its points by writing either 1, 2, or 3 each time it scores,
according to how it scored. For example, if a team scores via three normal field goals, followed
by two free throws, followed by another normal field goal, and then by a 3-point field goal, we
will have written the sequence (2,2,2,1,1,2,3). This is just one of many possible sequences
describing how a team could have scored 13 points. Another one is (2,2,1,3,2,2,1). Notice
that, even though these two sequences contain the same collection of values (two occurrences of
1, four occurrences of 2, and a single occurrence of 3), they are distinct because their elements
appear in different orders.

Develop a program that, given a nonnegative integer m representing the number of points
scored by a basketball team, calculates the number of distinct ways in which that score could
have been accumulated. Or, to put it more simply (and without mentioning basketball), have
the program calculate the number of distinct sequences whose elements sum to m and each of
whose members is either 1, 2, or 3.

Hint: There is exactly one way to score zero points (corresponding to the empty sequence),
and there are no ways to score fewer than zero points. To score m points, for m > 0, one
can score m — 3 points (in any way possible) followed by a 3-point field goal, or score m — 2
points (in any way possible) followed by a normal field goal, or score m — 1 points (in any way
possible) followed by a free throw.

Input: The first line contains a positive integer n indicating how many instances of the prob-
lem are to be solved. Each of the following n lines contains a single nonnegative integer m
representing a number of points.

Output: For each number m provided as input, display it, followed by the word points and a
colon, followed by the number of distinct ways a basketball team could accumulate m points,
as described above, followed by the word ways.

Sample input Resultant output

4 0 points: 1 ways

0 3 points: 4 ways

3 10 points: 274 ways
10 13 points: 1705 ways
13

