University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 1: Look-and-Say Sequences

Consider the sequence of integers
1, 11, 21, 1211, 111221, 312211, 13112221, 1113213211, ...

It is referred to as the look-and-say sequence with seed 1. The seed refers to the first element
of the sequence. Each subsequent element in the sequence is generated from its predecessor as
follows: group adjacent occurrences of the same digit and then use two digits to indicate, for
each group, how many are in it and which digit it contains, respectively.

For example, the seed, 1, is read as “one 1”7, which translates to the second element, 11. We
read that as “two 1’s”, which translates to the third element, 21. Moving forward to the fourth
element, 1211, we read it as “one 1, then one 2, then two 1’s”, which translates to the fifth
element, 111221.

Of course, each different choice of a seed results in a different sequence.

Develop a program that, given as input a nonnegative integer j and a positive integer k,
produces as output the first k£ elements of the Look-and-Say sequence with seed j.

Input The first line contains a positive integer n indicating how many sequences are to be
generated. Each of the next n lines contains two positive integers j and k that describe a
sequence, as explained in the preceding paragraph.

Output For each Look-and-Say sequence described in the input, the program should generate
as output a single line containing the elements of that sequence.

Sample input: Resultant output:

5 1 11 21 1211 111221 312211 13112221 1113213211
18 22 22 22 22 22 22

22 6 55555333337 555317 35131117 131511133117
55555333337 4 0 10 1110 3110

04 34

34 1

University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 2: Histogram Generation

Develop a program that, given a collection of quiz scores, generates a histogram showing the
collection’s frequency distribution. Quiz scores will be in the range zero to twenty, inclusive.

Input: The first line contains a positive integer n indicating how many collections are to be
processed. Each collection is described on two or more lines, the first of which contains the
number of quiz scores m (m > 0) in that collection. The remaining lines contain the quiz scores
themselves, twenty scores per line up until the last one, which will have a number of scores
equal to the remainder obtained when m is divided by 20.

Output: For each collection of quiz scores, the program should generate a histogram indicating
the frequency with which each of the values zero through twenty occurs in that collection.

The histogram’s form should be as in the sample output below. Specifically, the only quiz
scores that should be mentioned explicitly in the histogram are those between the minimum
and maximum scores recorded, inclusive. (For the first example below, this range is ten through
nineteen.)

The number of lines generated for a histogram should be exactly k43, where k is the maximum
number of occurrences of any of the quiz scores. This accounts for there being k asterisks in
the tallest column, one line for the scale (containing dashes and plus signs), one line containing
the quiz scores, and a blank line to separate one histogram from the next.

Sample input:

22

10 12 16 12 10 19 19 19 12 14 13 14 14 16 17 14 15 13 18 15
15 17

5

20 4 12 12 17

Resultant output:

*

* * % *
* * ok ok ok ok ok *
* * ok ok ok ok ok x X

———t——t— bttt ——+——+
10 11 12 13 14 15 16 17 18 19

*

* * * *
e B s St S B e
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 3: Riemann Sums

In Integral Calculus, we study problems that can be solved by “finding the area under a curve”.
That is, we have a function f mapping real numbers to real numbers, a lower bound a, and
an upper bound b, and we wish to determine the area of the region bounded on the left by the
line described by the equation x = a, on the right by the line described by the equation z = b,
below by the z-axis (i.e., the line described by the equation y = 0), and above by the curve
corresponding to the function f.

Using techniques from Calculus, we can often find this area exactly. In those cases in which we
cannot, we resort to computing an approximation to the area using what is called a Riemann
sum.

We proceed by choosing a positive integer m and by placing m rectangles side by side, each
of width Az = (b — a)/m, between the lines x = a and x = b. (Hence, the left edges of the
rectangles lie on the lines x = a, = a + Az, x = a + 2Azx, x = a + 3Ax, etc.) The height of
each rectangle is chosen so that its upper left corner is a point on the curve. We then calculate
the sum of the areas of the rectangles, which provides us with an estimate of the area of the
region of interest. (Generally speaking, the larger the value of m that we choose, the better we
expect the estimate to be.)

As an example, see the figure below, in which a = 0, b = 16, m = 8, and f is given by the
graph.

R N W\ 00 O N 0

1 2 3 45 6 7 8 9 1011 12 13 14 15 16

Figure 1: Estimating the Area Under a Curve by a Riemann Sum

Develop a program that, given real numbers a and b (with a < b), a positive integer m, and a
description of a polynomial p (satisfying p(x) > 0 for all = € [a,b]) estimates the area of the

region bounded by x = a on the left, x = b on the right, y = 0 below, and p above, using the
method described above.

Note that a polynomial p(x) is simply a function that can be expressed by
p(x) = co+cax+er® + i+ o 4t

for some k > 0 and real numbers (called coefficients) ¢, c1, ..., cx. We say that k is the degree
of p.

Input: The first line contains a positive integer n indicating the number of regions whose areas
are to be estimated. On the following n lines are described the regions, one per line. Each one
is described by real numbers a and b (the lower and upper bounds, respectively), a positive
integer m (the number of rectangles to use in calculating the estimate of area), a nonnegative
integer k (the degree of the polynomial), and the k+ 1 coefficients of the polynomial, beginning
with ¢g and ending with cy.

Output: For each region described, produce as output a two-line message identifying the
polynomial, the bounds, the number of rectangles used in calculating the estimate of area, and
the estimate itself. See the sample output below for the expected format. Put a blank line
after each message. Note that computer arithmetic on real numbers is not exact, so don’t be
alarmed if your results to not exactly match those given in the sample output below.

Sample input:

0.04.0410.02.0
0.04.08 1 0.0 2.0
-3.01.0422.00.01.0

Resultant Output:

I
o

.0x70 + 2.0x71
4.0 using 4 rectangles is 12.0

Estimated area under y
between x = 0.0 and x

I
o

.0x70 + 2.0x"1
4.0 using 8 rectangles is 14.0

Estimated area under y
between x = 0.0 and x

I
N

Estimated area under y .0x"0 + 0.0x"1 + 1.0x"2
between x = -3.0 and x = 1.0 using 4 rectangles is 22.0

University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 4: Next Permutation

A permutation of a set is simply a sequence that contains each member of that set exactly
once. For example, (4,2,5,1,3) is a permutation of the set {1,2,3,4,5}, as is (4,2,1, 3,5).

Let n be a positive integer, and let S = (x1,x9,...,2,) and T = (y1,y2, . .., Yn) be permutations
of the set {1,2,...,n}. Then we define S < T (S is “less than” T') to mean that there exists k,
1 <k < n, such that x, < yr and z; = y; for all ¢ satisfying 1 < i < k. In other words, S <T
means that, in the first position at which S and T disagree, S has the element of lesser value.

For example,
(4,2,1,3,5) < (4,2,5,1,3)

because in the first position where the two sequences disagree (namely, the third position), the
permutation on the left has a smaller value (1) than does the permutation on the right (5).

It should be clear that, by this definition, we can list all the permutations of {1,2,...,n} in
order, from least ((1,2,...,n)) to greatest ((n,n —1,n—2,...,1)).

As an example, here are the permutations of {1,2,3,4} in order from least to greatest:

(1,2,3,4), (1,2,4,3), (1,3,2,4), (1,3,4,2), (1,4,2,3), (1,4,3,2), (2,1,3,4), (2,1,4,3), (2,3,1
(2,3,4,1),(2,4,1,3),(2,4,3,1), (3,1,2,4), (3,1,4,2), (3,2,1,4), (3,2,4,1), (3,4,1,2), (3,4,2
(4,1,2,3), (4,1,3,2), (4,2,1,3), (4,2,3,1), (4,3,1,2), (4,3,2,1)

Develop a program that, given a positive integer n and a permutation S of the set {1,2,...,n},
computes the smallest permutation 7" such that S < T.

Hint: Let S = (x1,x2,...,2,) and suppose that x; < z;41 > zj42 > xj43 > -+ > x,. (Inother
words, suppose that j is the last position in .S at which an element is smaller than the next ele-
ment.) Then the smallest permutation T" greater than S is of the form (z1,x2,...,zj—1, 2k, .. .),
where x, is the smallest element among {xj1,%j42,...,2,} that is larger than z;. End of hint.

Input: The first line contains the number m > 0 of permutations that will be provided in
the remaining input. The next 2m lines contain those permutations, each one described on
two lines, the first of which contains a positive integer n and the second of which contains the

permutation itself (i.e., a sequence containing each member of {1,2,...,n} exactly once), with
spaces separating its elements. You may assume that none of the permutations given is the
largest one possible. (That is, none of them will be of the form (n,n—1,...,1).) You may also

assume that n < 30.

Output: For each permutation S given as input, generate three lines of output: the first
should display S, the second should display the smallest permutation that is larger than S,
and the third should be blank.

Sample Input:

4 14 12 10 3 136 7 11 985 21

Resultant Output:

26431
531246

o

14 12 10 3 136 711 9856 2 1
14 12 10 3136 812579 11

S

University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 5: Line Segment Rotation

Develop a program that, given as input the two endpoints P and @ of line segment PQ),
outputs the endpoints of the line segment obtained from PQ by rotating it 90 degrees about
its midpoint. In other words, the line segment obtained from P(@) has the same length as PQ),
is perpendicular to PQ, and has the same midpoint as PQ (at which they intersect).

Input: The first line contains a positive integer n indicating how many line segments are
subsequently given. Each line segment is described on a single input line by its endpoints, each
of which is identified by its z and y coordinates, respectively, which are real numbers.

Output: For each line segment given as input, the program generates a single line of output
that identifies the endpoints of the given line segment as well as the line segment obtained by
rotating the given line segment 90 degrees about its midpoint. See the examples below for the
proper output format.

Numbers should be accurate to at least three digits, but note that computer arithmetic on
real numbers is not exact, so don’t be alarmed if your results do not exactly match the sample
output below. Also note that the order in which the two endpoints appear in the result does
not matter.

Sample input:

5

-4.0 0.0 2.0 3.0
-3.7 -2.4 -3.7 6.2
4.5 5.0 0.5 -0.5
5.0 -12.0 -3.0 8.0

2.06.0 5.0 6.0

Resultant output:

Rotating (-4.0,0.0)(2.0,3.0) yields (-2.5,4.5)(0.5,-1.5)
Rotating (-3.7,-2.4)(-3.7,6.2) yields (-8.0,1.9)(0.6,1.9)
Rotating (4.5,5.0)(0.5,-0.5) yields (-0.25,4.25)(5.25,0.25)
Rotating (5.0,-12.0)(-3.0,8.0) yields (-9.0,-6.0)(11.0,2.0)
Rotating (2.0,6.0)(5.0,6.0) yields (3.5,4.5)(3.5,7.5)

University of Scranton
ACM Student Chapter / Computing Sciences Department
18th Annual High School Programming Contest (2008)

Problem 6: Shortest Paths in a Directed Graph

A directed graph (or digraph) is comprised of vertices (the singular of which is vertez) and edges.
Each edge connects a pair of vertices, going from one to the other. In the picture below, the
vertices and edges are represented by circles and arrows, respectively. Simply for the purpose
of identifying the vertices, we have numbered them.

:
\M

Figure 2: A 10-vertex digraph

A path of length m in a digraph is a sequence (vg, v1,v2, ..., vy) of vertices such that, for each
i satisfying 0 < i < m, there is an edge from v; to v;y;. (Notice that the length of a path
corresponds to the number of edges that are “crossed” in tracing that path.) Examples of paths
in the pictured digraph are (2,0,2,3,4,1,6,4,1) and (5).

Suppose that v and v are vertices. There may be one or more paths from u to v, or there may
be none. In the former case, the distance from u to v is defined to be the smallest among the
lengths of those paths.

One common way of representing a digraph of n vertices is by an n x n matrix of 0’s and
1’s. An edge from vertex i to vertex j is indicated by a 1 appearing in the ith row and jth
column of the matrix. A 0 appearing there indicates the absence of such an edge. This matrix
is commonly referred to as the digraph’s adjacency matriz.

Develop a program that, given (the adjacency matrix of) a digraph and some pairs of vertices,
calculates, for each such pair, the distance from one vertex to the other.

Hint: In case u and v are the same vertex, the distance from u to v is zero. Otherwise, to
find the distance from u to v, “explore” all the edges leaving u, by which you will “discover”
all the vertices at distance one from u. If any of these vertices is v, its distance from wu is
one. Otherwise, explore all the edges leaving these vertices, by which you will discover all the

vertices at distance two from u. If any of them is v, its distance from v is two. And so on and
so forth. In order to avoid getting caught in an infinite loop, note that once a vertex’s edges
have been explored, there is no benefit in exploring them for a second time.

Input: The first line contains a positive integer n indicating the number of vertices in the
digraph. On the next n lines is the digraph’s adjacency matrix; each line contains a sequence
of n zero’s and one’s, separated by spaces. (The sample input below includes the adjacency
matrix for the digraph illustrated above.) On the following line is a positive integer r indicating
how many pairs of vertices are to be analyzed. These pairs appear, one pair per line, on the
next r lines. Each pair is given by two integers in the range 0..n — 1, separated by a space.
(The vertices are assumed to be numbered from 0 to n — 1.)

Output: For each pair of vertices given, the program is to display them and report the distance
from one to the other. In case there is no path from one to the other, the program reports this
fact.

Sample input: Resultant output:

10 distance from O to 6 is b5
0010000000 no path from 8 to 4
0000001000 distance from 5 to 6 is 2
1001000000 no path from 6 to 5
0000100001 distance from 5 to 4 is 3
0100000000 distance from 2 to 3 is 1
1100000100 distance from 1 to 1 is O
0100100000 distance from 5 to 9 is 4
0000000O0O00O0

0000000O0O00O0

0001000000

8

06

8 4

56

6 5

5 4

2 3

11

59

10

