
University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 1: Multiplication à la russe

The standard multiplication algorithm taught in elementary schools represents just one of
several ways to compute the product of two numbers. A different method, which was known in
ancient Egypt and is called multiplication à la russe, more closely resembles how multiplication
is performed in electronic computers.

Using this method, we need not refer to (or memorize) the standard multiplication table (which,
for any two single-digit numbers, tells us their product). Rather, we need to know how to do four
things: add, decrement, double, and halve. Using these four operations, we can characterize
multiplication of two positive integers a and b as follows:

a · b =

b if a = 1 (1)
(a/2) · 2b if a > 1 and a is even (2)

b + ((a− 1)/2) · 2b if a > 1 and a is odd (3)

To illustrate this, we multiply 214 by 3:

214 · 3
= 107 · 6 by (2)
= 6 + 53 · 12 by (3)
= 6 + 12 + 26 · 24 by (3)
= 6 + 12 + 13 · 48 by (2)
= 6 + 12 + 48 + 6 · 96 by (3)
= 6 + 12 + 48 + 3 · 192 by (2)
= 6 + 12 + 48 + 192 + 1 · 384 by (3)
= 6 + 12 + 48 + 192 + 384 by (1)
= 642 by adding

Develop a program that, given two positive integers, multiplies them according to this method
and outputs their product as the sum of numbers obtained during the process. For the example
above, this sum is 6 + 12 + 48 + 192 + 384.

Input: The first line contains a positive integer n indicating how many instances of the problem
are described thereafter. Each of the next n lines contains a pair of positive integers a and b
to be multiplied, separated by a space.

Output: For each pair a and b given as input, display on a single line the equation

a ∗ b = t1 + t2 + · · · + tr

where the ti’s are the elements of the sum obtained by multiplying a and b using multiplication
à la russe. The ti’s should be in ascending order.

1

Sample input

4

214 3

1 3543

3543 1

134 18

Resultant output

214 * 3 = 6 + 12 + 48 + 192 + 384

1 * 3543 = 3543

3543 * 1 = 1 + 2 + 4 + 16 + 64 + 128 + 256 + 1024 + 2048

134 * 18 = 36 + 72 + 2304

2

University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 2: Self-Divisible Numbers

A number is said to be self-divisible if each of its digits is a divisor of the prefix of the number
up to and including itself. For example, 2136 is self-divisible because 2 is a divisor of 2, 1 is a
divisor of 21, 3 is a divisor of 213, and 6 is a divisor of 2136.

Develop a program that, given a range of natural numbers (described by its lower and upper
bounds), identifies all the self-divisible numbers in that range.

Note 1: The only number of which zero is a divisor is zero itself.

Note 2: Most programming languages include a so-called modulo operator by which to de-
termine the remainder of a division. In Java, C, and C++, this operator is denoted by the
percent sign, %. Thus, for example, the expression 13 % 5 yields 3 as its result.

Input: The first line contains a positive integer n indicating how many ranges of natural
numbers are subsequently described. Each of the next n lines contains two natural numbers k
and m, with 0 ≤ k ≤ m, describing the range k..m.

Output: For each range given, the program displays a three-line message that identifies all
self-divisible numbers in that range. The first line identifies the range, the second lists all the
self-divisible numbers in that range, and the third is blank. (See sample output on next page
for the intended format.) If there are numerous self-divisible numbers listed on the second line,
it will ”wrap around” when displayed. That’s fine.

3

Sample input:

4

0 15

490 621

35670 35700

35 134

Resultant output:

Self-divisible numbers between 0 and 15 are:

0 1 2 3 4 5 6 7 8 9 11 12 15

Self-divisible numbers between 490 and 621 are:

511 512 513 515 516 521 522 524 525 528 551 552 555 611 612 615 621

Self-divisible numbers between 35670 and 35700 are:

Self-divisible numbers between 35 and 134 are:

35 36 41 42 44 45 48 51 52 55 61 62 63 64 65 66 71 72 75 77 81 82 84 85 88

91 92 93 95 96 99 111 112 115 121 122 123 124 125 126 128

4

University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 3: Reverse-Word Caesar Cipher Decoding

ACaesar cipher (named after the Roman Emperor Julius Caesar) is a rudimentary encryption
scheme in which each letter is replaced by the letter occurring k places after it in the alphabet.
(Imagine that the letters are listed in a circle so that A immediately follows Z.) The number
k is referred to as the shift factor because, in effect, a Caesar cipher shifts all the letters of the
alphabet k positions. (Non-letters are left unchanged.)

For example, if k = 2, A would be encoded as C, B would be encoded as D, ..., X would
be encoded as Z, Y would be encoded as A, and Z would be encoded as B. The notion of a
negative shift makes sense, too. For example, if k = −3, A would be encoded as X, B would
be encoded as Y, C would be encoded as Z, D would be encoded as A, ..., and Z would be
encoded as W. (Note that a shift of −3 is equivalent to a shift of 23; more generally, a shift of
k is equivalent to a shift of k + 26.)

If, in addition, we encrypt a message so that each word’s characters are put into reverse order,
we call that a Reverse-Word Caesar Cipher. By a word we mean a sequence of letters that

(a) either occurs at the beginning of a message or is immediately preceded by a non-letter, and
(b) either occurs at the end of a message or is immediately followed by a non-letter.

For example, using a shift factor of k = 2, the messageHELLO, WORLD! would be encrypted
as QNNGJ, FNTQY!

Develop a program that, given an integer k satisfying −25 ≤ k ≤ 25 and a message that has
been encrypted using a Reverse-Word Caesar Cipher with a shift factor of k, decrypts the
message and displays it. (You may assume that all letters appearing in the message are in
upper case.)

Input: The first line contains a positive integer n indicating how many messages are to be
decrypted. Following that are the encrypted messages, each occupying two lines, the first of
which contains the shift factor k (−25 ≤ k ≤ 25) and the second of which contains the actual
encrypted content of the message.

Output: For each given encrypted message, display the decrypted version on a line.

Sample input and output appear on the next page.

5

Sample input:

3

2

QNNGJ, FNTQY!

-5

YJJB AZDMB, TKJJIN

0

EREHW ERA UOY?

Resultant output:

HELLO, WORLD!

GOOD GRIEF, SNOOPY.

WHERE ARE YOU?

6

University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 4: Permutation Representation Conversion

A permutation of a set is a sequence that contains each member of that set exactly once. Here
we shall be concerned with permutations of the set Zm = {0, 1, 2, · · · ,m− 1}, where m is some
positive integer. For example

〈4, 2, 5, 0, 1, 3〉
is the permutation of Z6 in which 4 appears first, followed by 2, followed by 5, etc., etc.

Rather than simply listing the elements in the order in which they appear, an alternative
way to describe a permutation is to indicate, for each of its elements, how many smaller
elements precede it. That is, for a permutation P of the set Zm, and for each integer i
satisfying 0 ≤ i < m, let ki be the number of values smaller than i that precede i in P . The
sequence SP = [k0, k1, k2, · · · , km−1] then uniquely describes P and hence is an alternative way
of representing it. (We use square brackets here rather than angled brackets, as in describing
P , simply to emphasize that the two kinds of sequences are interpreted differently.)

In our example permutation P = 〈4, 2, 5, 0, 1, 3〉, k5 = 2 because two elements smaller than 5
(namely, 4 and 2) precede it and k2 = 0 because no element smaller than 2 precedes it (due to
both 0 and 1 coming later in the permutation). The reader should have no trouble calculating
the other ki’s, thereby arriving at the sequence

SP = [0, 1, 0, 3, 0, 2]

Develop a program that, given positive integer m and the sequence SP , for some permutation
P of the set Zm, outputs P .

Input: The first line contains a positive integer n indicating how many instances of the problem
are to be solved. Each instance is described on two lines, the first of which contains a positive
integer m and the second of which contains a sequence of nonnegative integers of length m
corresponding to SP , for some permutation P of the set Zm.

Output: For each sequence given, display it, followed by the word “represents”, followed by
the permutation that it represents. Use square brackets and angled brackets as shown in the
sample output.

Hint: Place the largest number into the permutation, then the next-to-largest, etc., etc.

Sample input and output are shown on the next page.

7

Sample input:

2

6

0 1 0 3 0 2

13

0 1 1 3 4 0 2 6 1 5 0 8 8

Resultant output:

[0 1 0 3 0 2] represents < 4 2 5 0 1 3 >

[0 1 1 3 4 0 2 6 1 5 0 8 8] represents < 10 5 8 0 6 2 9 1 12 11 3 7 4 >

8

University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 5: Closest Point on a Line Segment

Develop a program that, given as input the cartesian coordinates of three points P , Q, and R,
computes the coordinates of the point on line segment PQ that is closest to R.

Hint 1: The distance between points (x1, y1) and (x2, y2) is

√
(x1 − x2)2 + (y1 − y2)2

Hint 2: The slope of the line passing through points (x1, y1) and (x2, y2), assuming that x1 6= x2,
is (y2 − y1)/(x2 − x1).

Hint 3: The slope-intercept form of the equation describing the line passing through point
(x1, y1) and having slope m is y = mx+ b, where b = y1 − (m1 · x1).
Hint 4: For i = 1, 2, let (non-vertical) line Li be given by the equation y = mix+ bi. Then, if
their slopes are distinct, the x-coordinate of the point where the two lines intersect is given by
(b2 − b1)/(m1 −m2).

Input: The first line of input contains a positive integer n indicating how many instances of
the problem are described thereafter. Each of the following n lines of input contains six real
numbers, x1, y1, x2, y2, x3, and y3, separated by spaces. The intended interpretation is that
point P is (x1, y1), point Q is (x2, y2), and point R is (x3, y3).

Output: For each given instance of the problem, generate three lines of output. The first
identifies the endpoints of the given line segment PQ, the second identifies the given point R
and the point S on PQ that is closest to R, and the third line is to be blank. See sample
output below for the intended format and phrasing. As in the sample output, you may round
off coordinates to the nearest thousandth, but this is not required.

Sample input and output appear on next page.

9

Sample input:

10

0.0 2.0 4.0 2.0 1.5 15.0

0.0 2.0 4.0 2.0 8.0 6.0

0.0 2.0 4.0 2.0 -2.0 0.0

1.0 -1.0 1.0 5.0 1.0 2.0

1.0 -1.0 1.0 5.0 5.0 3.0

1.0 -1.0 1.0 5.0 -2.0 -4.5

-2.0 1.0 4.0 -5.0 6.0 1.0

-2.0 1.0 4.0 -5.0 0.0 6.0

-2.0 1.0 4.0 -5.0 0.5 -1.5

7.0 5.0 -2.0 1.0 8.0 0.0

Resultant output:

The point on segment [(0.0,2.0):(4.0,2.0)]

closest to point (1.50,15.0) is (1.5,2.0).

The point on segment [(0.0,2.0):(4.0,2.0)]

closest to point (8.0,6.0) is (4.0,2.0).

The point on segment [(0.0,2.0):(4.0,2.0)]

closest to point (-2.0,0.0) is (0.0,2.0).

The point on segment [(1.0,-1.0):(1.0,5.0)]

closest to point (1.0,2.0) is (1.0,2.0).

The point on segment [(1.0,-1.0):(1.0,5.0)]

closest to point (5.0,3.0) is (1.0,3.0).

The point on segment [(1.0,-1.0):(1.0,5.0)]

closest to point (-2.0,-4.5) is (1.0,-1.0).

The point on segment [(-2.0,1.0):(4.0,-5.0)]

closest to point (6.0,1.0) is (2.0,-3.0).

The point on segment [(-2.0,1.0):(4.0,-5.0)]

closest to point (0.0,6.0) is (-2.0,1.0).

The point on segment [(-2.0,1.0):(4.0,-5.0)]

closest to point (0.5,-1.5) is (0.5,-1.5).

The point on segment [(7.0,5.0):(-2.0,1.0)]

closest to point (8.0,0.0) is (5.979,4.546).

10

University of Scranton
ACM Student Chapter / Computing Sciences Department
22nd Annual High School Programming Contest (2012)

--

Problem 6: East Zordak’s Congressional Districts

East Zordak is a new country. Much like the U.S., it has a legislative body each of whose
members represents the residents of a particular congressional district within one of its member
states.

Develop a program that, given the maps of the congressional districts of East Zordak’s states,
reports, for each district, not only its area but also the number of contiguous regions that
compose it. (A definition of contiguous region appears below.)

Input: The first line contains a positive integer k equal to the number of states in East Zordak.
The remaining input data are the descriptions of those states’ congressional districts. The first
line of each such description contains the name of the state. The second line contains a positive
integer d indicating the number of congressional districts in that state, followed on the next
line by two positive integers m and n that describe the north-south and east-west dimensions,
respectively, of the state. (Conveniently for us, all states in East Zordak are rectangular in
shape!). On the following m lines is the “map” of the state, which is given by an m-row
×n-column matrix, each element of which represents one square unit of land and indicates in
which of the d congressional districts it lies. Each element is a positive integer in the range
1..d; adjacent elements are separated by a single space.

Output: For each of the k states, the program should display its name and report, for each
of its congressional districts, the district’s area and the number of contiguous regions that
compose it. (See the sample output below for the form in which this information is to be
displayed.) Generate a blank line following the output for each state.

Definition of contiguous region: Consider a pair of square units of land, both in the
same congressional district. They are defined to be in the same contiguous region of that
district if and only if it is possible to get from one to the other (moving horizontally, vertically,
or diagonally from one square to an adjacent square on each step) without ever entering a
different congressional district.

Sample input and output appear on the next page.

11

Sample Input: Explanation:

------------- ------------

2 East Zordak has two states.

Zandar This is name of first state.

6 It has 6 districts

7 10 and its size is 7-by-10.

4 4 4 4 2 2 1 1 3 3 This is the map showing in which

4 4 4 2 2 2 1 1 3 3 congressional district each

4 4 2 2 2 1 1 6 5 5 square unit of land lies.

2 2 3 3 3 3 6 5 5 5

2 2 3 3 1 3 5 5 3 5

2 2 2 3 3 4 4 5 3 5

4 4 4 5 5 3 3 3 3 3

Zork Name of second state.

5 It has 5 districts

7 20 and its size is 7-by-20.

4 4 4 4 2 2 1 4 4 4 1 1 1 5 5 5 5 5 5 5

4 4 4 2 2 2 1 4 4 1 1 1 1 1 1 5 5 5 3 3

4 4 2 2 2 2 2 1 1 1 1 1 1 5 5 5 3 3 3 3

4 4 2 2 2 2 2 5 5 5 5 5 5 3 3 3 3 3 3 3

2 2 2 5 5 5 5 2 5 5 5 3 3 3 3 3 3 3 3 3

4 2 2 5 5 5 5 2 2 2 2 3 3 3 3 3 3 1 1 1

4 4 4 5 5 5 5 2 2 2 2 2 3 3 1 1 1 2 2 2

Resultant output:

In Zandar:

District 1 has area 7 and 2 region(s).

District 2 has area 15 and 1 region(s).

District 3 has area 20 and 2 region(s).

District 4 has area 14 and 3 region(s).

District 5 has area 12 and 2 region(s).

District 6 has area 2 and 1 region(s).

In Zork:

District 1 has area 23 and 2 region(s).

District 2 has area 33 and 2 region(s).

District 3 has area 30 and 1 region(s).

District 4 has area 20 and 3 region(s).

District 5 has area 34 and 1 region(s).

12

