University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 1: List of Complementary Divisors

Develop a program that, given a positive integer, computes the list of its complementary divisor
pairs. For a positive integer r, the ordered pair (k,m) is a pair of complementary divisors if
r=km and 1 < k < m. For example, the complementary divisor pairs of 30 are (1,30), (2, 15),
(3,10), and (5,6).

Input: The first line contains a positive integer n indicating how many input values appear
on subsequent lines. Each of the next n lines contains a single positive integer.

Output: For each positive integer provided as input, display it, followed by a colon, followed
by the list of its complementary divisor pairs, ordered so that the first components are in
increasing order. (See below for proper format.)

Sample input:

9876

Resultant output:

5: (1,5)

36: (1,36) (2,18) (3,12) (4,9) (6,6)

104: (1,104) (2,52) (4,26) (8,13)

9876: (1,9876) (2,4938) (3,3292) (4,2469) (6,1646) (12,823)

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 2: Line Equations

Develop a program that, given as input two points P and @ on the cartesian plane, outputs the
slope-intercept equation of the line that passes through P and (). Recall that the slope-intercept
equation of a line has the form

y=mzx—+b

so called because m is the slope of the line and b is its y-intercept (i.e., the value of y at which
the line crosses the y-axis).

In the case that the line described by P and @ has no slope (i.e., is vertical), the program
should output an equation of the form x = c.

Input: The first line contains a positive integer n indicating how many pairs of points are
subsequently given. FEach pair of points is described on a single line containing four real
numbers: the first two identify P and the last two identify Q). Each point is identified by its x
and y coordinates, respectively.

Output: For each pair of points given as input, the slope-intercept equation of the line passing
through those two points should appear on a single line of output. (Or, in the case of a vertical
line, the equation should be of the form = = ¢.) See the examples below for the proper output
format. Notice that if the y-intercept is negative, there should be no plus sign preceding it.
Numbers should be accurate to at least three digits.

Sample input:

2.0 3.0 -4.0 0.0
-3.7 -2.4 -3.7 6.2
4.5 5.0 0.5 -0.5
5.0 -12.0 -3.0 8.0

Resultant output:

y = 0.5x + 2.0

x = -3.7

y = 1.375x - 1.1875
y = -2.5x + 0.5

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 3: Palindromic Numbers

A number is said to be palindromic if, by reversing the order of its digits, we obtain the same
number.! For example, 484 and 4884 are palindromic, but 3654 is not.

Define r and f to be the functions such that, for positive integer k, (k) is the number obtained
by reversing the order of the digits in k& and f(k) = k + r(k).

For example, r(352) = 253 and f(352) = 352 + r(352) = 352 + 253 = 605.

For positive integer k, define the sequence (ko, k1, ko,...) as follows: ky = k and, for ¢ > 0,
ki = f(ki—1). That is, the first element in the sequence is k and each element thereafter is
obtained by applying f to the previous element.

For example, take k = 78. We have

ko =k =78

ki = f(78) =T78+87 =165
ky = f(165) =165+561 =726
ks = f(726) =T726+627 =1353
ki = f(1353) =1353+ 3531 = 4884

We stopped at k4 because it is palindromic!

Develop a program that, given a positive integer k, computes the first palindromic number in
the sequence (ko, k1, ka, ...).

Input: The first line contains a positive integer n indicating how many instances of the problem
are described on the succeeding lines. Each instance of the problem is described on a single
line containing one positive integer k.

Output: For each given k, report its value and the value of the first palindromic number in
the sequence (ko, k1, k2, ...), separated by a space, colon, and another space.

You may assume that all given values of k are such that the correct result falls quite comfortably
within the range of integers representable using the data type int in Java or C/C++.

Sample input and output appear on the next page.

LA more rigorous definition would say that a number m is palindromic with respect to a base b if the base b
numeral representing m is a palindrome (i.e., remains the same when its digits are reversed). However, here we
will deal exclusively with base 10 (i.e., decimal) numerals and hence we can ignore these details.

Sample input:

242

87
347
249
97
3438

Resultant output:

66 : 66

242 : 242
35 : 88

87 : 4884
347 : 1991
249 : 5115
97 : 44044

3438 : 59895

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 4: Square Transformations

Imagine that you have four unit (i.e., 1 x 1) squares (labeled A, B, C, and D) that have been
“glued together” to form a single 2 x 2 square. There are eight different operations that, when
applied to a 2 x 2 square, preserve the adjacencies between its unit sub-squares while allowing
those sub-squares to change positions. They are illustrated below.

IA) g RAR é g (Identity (or Full Turn))

IA) 2 =]8 g (Clockwise Quarter Turn)

g 2 o g]2 (Clockwise Half Turn)

g g = i g (Clockwise Three-Quarter Turn)
g g -4]é g (Vertical Axis Flip)

IA) 2 — i g (Horizontal Axis Flip)

g 2 A [C) i (Slash Axis Flip)

g g - g g (Backslash Axis Flip)

If you were to apply two or more operations in sequence, the net effect would be the same as
if you had applied a particular one of the eight operations. But which one? Of course, that
depends upon the operation sequence.

The illustration below demonstrates that applying a Clockwise Quarter Turn, followed by
a Slash Axis Flip, followed by a Horizontal Axis Flip yields the same result as applying a
Clockwise Half Turn. Using the symbols by which we have named the various operations, we

could express this observation using the equation >/- = V.
A|B =R DA L} B|A . C|D
D|C C|B C|D Bl A

Develop a program that, given a character string describing a sequence of operations, indicates
which of the eight operations has the same net effect as the given sequence.

Input: The first line contains a positive integer n indicating how many operation sequences
will be described on subsequent lines. Each of the next n lines contains a nonempty string
describing an operation sequence. Each such string will be composed of characters from the
set { 7, > v, <, |, -, /,\ }. Each of these characters represents one of the eight operations,
as indicated in the first illustration. (The characters ~ and v are used in place of A and V,
respectively, for obvious reasons.)

Output: For each operation sequence given as input, use an equation to identify the single
operation to which it is equivalent, following the format exemplified in the sample output shown
below.

Sample input Resultant output
4

vV vv = 7

>/- >/- =v

\-<|"v \=<|"v = |
/\V<|=<\=v">> | NV =<\=v">>| =/

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 5: Eight Queens Verification

In the game of chess, the queen is the most powerful piece, as it can attack along ranks (i.e.,
rows), files (i.e., columns), and diagonals of the 8 x 8 board on which the game is played.
(Thus, it combines the abilities of the rook and the bishop.)

Although it has little or nothing to do with the playing of chess, an interesting problem is that
of placing eight queens on the chessboard in such a way that no queen can attack another. In
any solution, there will be exactly one queen in each of the eight ranks, exactly one queen in
each of the eight files, and at most one queen in each of the 30 diagonals.

One solution (among many) to the problem is illustrated below. Following convention, the
chessboard’s ranks are numbered 1-8 and its files are labeled a through h. Squares on which a
queen has been placed are marked with a Q.

Q

Q

Q

=N W OO N1
O

Q
a|b|lc|d|e| f|g|h

Figure 1: One Solution to the Eight Queens Problem

This solution is described by the string dfaebhcg, which indicates the files in which queens
appear, going from ranks 1 through 8.

Develop a program that, given a string of length eight in which every character is one of the
lower case letters in the range a. .h, reports whether or not it describes a valid solution to the
Eight Queens Problem.

Input: The first line contains a positive integer n indicating how many proposed solutions will
be described on subsequent lines. Each of the next n lines contains a string of length eight,
containing only lower case letters between a and h, inclusive, describing the positions of eight
queens on a chessboard. The i-th letter in the string identifies the file in which the queen in
rank ¢ appears.

Output: For each input string, echo it and indicate whether or not it describes a valid solution
to the Eight Queens Problem, following the format exemplified in the sample output below.

Sample input and output appear on the next page...

Sample input:

dfaebhcg
bfhcadge
eahdbgcf
faebhcgd
fdhagbec
dhbacbdg
caehfbdg

Resultant output:
dfaebhcg: valid
bfhcadge: valid
eahdbgcf: valid
faebhcgd: valid
fdhagbec: NOT valid
dhbacbdg: NOT valid
caehfbdg: NOT valid

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 6: Order of a Permutation

A permutation of a set is a sequence that contains each member of that set exactly once. For
example, P = (c a b d) is a permutation of the set {a, b, ¢, d} consisting of the first four lower
case letters. If we number the positions in P starting at one, then ¢ is at position 1, a is
at position 2, b is at position 3, and d is at position 4. Hence, we can view P as a function
that maps 1 to ¢, 2 to a, and so on. That is, using functional notation, P(1) = ¢, P(2) = a,
P(3) =b, and P(4) = d. To emphasize this point of view, we can express P like this:

1 2 3 4
Ll
c a b d
For this problem we are concerned only with permutations of the set Zf = {1,2,...,m},

where m is some positive integer. (Thus, henceforth any use of the term “permutation” is to
be understood to mean one of these.) As an example, here is a permutation of the set Z;r :

o+
W< D
RNPEN

4
0
2

<4
—_ 4w

1
!
5

We can generate new permutations by composing a permutation with itself any number of
times. Specifically, if o is a permutation of Z! (where m is any positive integer) and k > 0,
we define o] to be the permutation such that for all j € Zt,

where o appears on the right-hand side exactly k times. For example, taking o to be the
permutation depicted above,

A(6) = o(o(0(6) = o(0(3) = o(1) = 5

It turns out that, for any permutation of Z repeated composition will eventually produce

the identity permutation, which maps each of 1,2,...,m to itself. The minimum number of
compositions necessary to achieve this is referred to as the order of the permutation. Our
example permutation o has order 12, as 12 is the identity permutation but none among ol

ol ... o' is the identity permutation.

Develop a program that, given as input a positive integer m and a permutation of the set Z;
reports the order of that permutation.

Hint: The order of a permutation is a function of the lengths of its cycles. Our example
permutation has two cycles, one of length four (involving 1,3,5,6) and one of length three
(involving 2,4, 7).

Input: The first line contains a positive integer n indicating how many permutations are
described on the succeeding n lines. Each instance of the problem is described on two lines,
the first of which contains a positive integer m and the second of which contains a permutation
o of the set {1,2,...,m} described by the sequence of numbers (1), o(2), ..., o(m).

Output: For each permutation given as input, the program is to display the permutation and
its order on one line. See the sample output below for proper formatting.

Sample input:

5712634

11

4107 112158369
11
4103118756921
11
5211184631079
8

58461732

Resultant output:

Permutation <6 7 1 2 6 3 4> has order 12
Permutation <4 10 7 11 2 1 5 8 3 6 9> has order 10
Permutation <4 10 3 11 8 7 5 6 9 2 1> has order 12
Permutation <6 2 1 11 8 4 6 3 10 7 9> has order 12
Permutation <6 8 4 6 1 7 3 2> has order 4

10

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 7: Polynomial Division

Develop a program that computes the quotient and remainder resulting from dividing a poly-
nomial of the form x + a, where a is an integer, into a polynomial with integer coefficients. To
illustrate, here are two worked-out examples:

2x72 + 2x + 7 4x~3 - 6x72 + 12x - 29
x-3) 2x°3 - 4x"2 + 1x - 3 x+2) 4x"4 + 2x"3 + 0x"2 - bBx + 2
2x"3 - 6x72 4x~4 + 8x"3
2x"2 + 1x - 3 -6x"3 + 0x"2 - bx + 2
2x72 - 6x -6x"3 - 12x72
x - 3 12x"2 - bx + 2
7x - 21 12x72 + 24x
18 -29x + 2
-29x - B8

In the example on the left, x — 3 is the divisor and 223 — 422 + 2 — 3 is the dividend. The
resulting quotient and remainder are 222 4+ 2z 4 7 and 18, respectively.

Input: The first line contains a positive integer n indicating how many division problems are
described on succeeding lines. Each division problem is described on two lines, the first of
which contains the constant a in the divisor + a and the second of which contains the degree
d of the dividend followed by its d+ 1 coefficients, in order from the most to the least significant
term.

Output: For each division problem given as input, display it, together with the quotient and
remainder, in the format exemplified below. If you were to display the polynomials without
using unary minus signs and/or omitting 1 coefficients and/or omitting altogether terms with
zero coefficients, that would be preferred, but not required. For example, 22* — 522+ 2 —3 is a
better way to write 222 + —522 + 1z 4+ —3. (Note that the first example output line below is in
an acceptable format and the second example output line is in the preferred but not required
format.)

11

Sample input: Explanation:

2 Two division problems will be described

-3 divisor is x - 3

32-41-3 dividend has degree 3 with coeffients 2,-4,1,-3

2 divisor is x + 2

4420 -52 dividend has degree 4 with coefficients 4,2,0,-5,2

Resultant output:

(2x"3 + “4x"2 + 1x + -3) / (x + -3) = 2x"2 + 2x + 7 remainder 18
(4x4 + 2x"3 - bx + 2) / (x + 2) = 4x"3 - 6x"2 + 12x - 29 remainder 60

12

University of Scranton
ACM Student Chapter / Computing Sciences Department
26th Annual High School Programming Contest (2016)

Problem 8: NFA String Acceptance

Depicted in the figure below is a nondeterministic finite automaton (NFA) that we will refer to
as M. Each circle represents a state and each arrow labeled by a symbol represents a transition
from one state to another (or itself) associated with that symbol. The unlabeled arrow points
to the initial state. Double circles correspond to final states. By convention, we name the
states in an NFA qq, q1, ..., ¢gm_1, where m is the number of states and ¢g is the initial state.
The set of symbols appearing as labels on transitions is called the alphabet of the NFA.

Figure 2: Nondeterministic Finite State Machine M

Consider the string baab. In M there are three paths beginning at the initial state that “spell
out” that string:

b a a b
g0 = g0 — 41 — qo = 4o
b a a b
90 — 90 — 41 — qo —7 G3
b a a b
9 — g3 — 43 — g3 — q4
Due to the fact that at least one of these paths (namely, the last one) ends in a final state, M
is said to accept baab.

If, on the other hand, all paths spelling out a particular string end in non-final states, that
string is said to be rejected by M. An example is the string baa, as the three paths that spell
it out end in the non-final states qg, g2, and g3, respectively.

13

Notice that it is possible for there to be no paths that spell out a particular string, in which
case it is certainly rejected. An example of this is aab (or any string of which aab is a prefix).
(The only path spelling out aa ends in g2, but there is no outgoing transition from there labeled
b; hence, even if g were a final state, any string having aab as a prefix is rejected.)

Develop a program that, given an NFA with alphabet {a,b} and some input strings composed
of a’s and b’s, reports, for each input string, whether or not it is accepted by the NFA.

Input: The first line contains the number m > 0 of states in the NFA to be tested, followed
by the number k£ > 0 of final states, followed by the number ¢ > 0 of transitions. The second
line contains k integers in the range 0..m — 1 identifying the NFA’s final states. (The initial
state is not explicitly identified because it is to be understood that it is state 0.) Each of the
following ¢ lines describes a single transition, which is given by two state identifiers (integers
in the range 0..m — 1) p and ¢ separated by the label (either a or b) on a transition that goes
from state p to state g. The transitions need not be listed in any particular order. (The sample
input below describes M.)

On the following line is a positive integer r indicating how many input strings are to be
processed. Each of the following 7 lines contains one such string.

Output: For each string given as input, generate one line of output that classifies that string
as being either accepted or rejected by the NFA.

Sample Input: Resultant Output:
52 13 baab is accepted
14 aabab is accepted
Ob O bbbb is accepted
0Ob 3 bbbababaa is accepted
4 b4 aaaaaa is rejected
3 a3 abbaaabaa is rejected
0al

3b1

1 a0

1b1

3 b4

1 a2

2 a4

4 a2

4 b3

6

baab

aabab

bbbb

bbbababaa

aaaaaa

abbaaabaa

14

