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Problem 1: Divisor Differences

Develop a program that, given integers m and k satisfying m > k > 0, lists every pair of
positive integers (7, j) such that j — i = k and both ¢ and j are divisors of m.

Input: The first line contains a positive integer n indicating how many instances of the problem
are described on the succeeding n lines. Each instance of the problem is described on a single
line containing two positive integers, m and k, as described in the preceding paragraph.

Output: For each given instance (m,k) of the problem, echo m and k followed by a colon
and a space, followed by the list of all (7, j) pairs that are in relation to m and k as described
above. The pairs should appear so that the ¢ values are in increasing order.

Sample input: Resultant output:

11

12 1 12,1: (1,2) (2,3) (38,4)

12 2 12,2: (1,3) (2,4) (4,6)

12 3 12,3: (1,4) (3,6)

12 4 12,4: (2,6)

12 5 12,5: (1,6)

12 6 12,6: (6,12)

12 7 12,7:

12 11 12,11: (1,12)

120 5 120,5: (1,6) (3,8) (5,10) (10,15) (15,20)
19 2 19,2:

36 6 36,6: (3,9) (6,12) (12,18)
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Problem 2: Diamond/Hourglass Figure

Develop a program that “draws” a figure as illustrated below, of any specified size. The figure
depicts two shapes enclosed in a box, one shape resembling a diamond and the other resembling
an hour glass. Exactly what is meant by “size” will be evident from viewing the sample figures
below.

Input: The first line contains a positive integer n indicating how many instances of the figure
are to be drawn. Each subsequent line contains a positive integer indicating the desired size of
the figure to be drawn.

Output: For each size provided as input, a figure of that size is to appear, followed by a blank
line.

Sample input and resultant output appear on the next page...
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Problem 3: Run-length Encoding

Run-length encoding is a data compression technique that works well on data in which values
tend to repeat frequently. Such data is common in some kinds of applications, including digital
imaging. Fax machines, for example, employ this kind of compression, as does the JPEG image
encoding standard.

Within a sequence, a run is a maximal subsequence all of whose members have the same value.
(By “maximal” is meant that a run cannot be extended to include the element preceding it or
the one following it, because they have values that are different from the (common) value of
the run’s members.)

By this definition, any sequence can be split up (uniquely) into runs. Consider, for example,
this sequence S of integers:

S =37005555554294290008222086868686 75112

Using parentheses to partition S into its runs, we get

(37)(0 0)(5 5 5 5 5 5)(429 429)(0 0 0)(8)(2 2 2)(0)(86 86 86 86)(7)(5)(1 1)(2)

The rules for performing run-length encoding are as follows:

(1) Any run of length three or less whose members are non-zero is left unaltered.

(2) Any run of length four or more whose members are non-zero is encoded by three numbers:
zero (which signals that a run is being encoded), followed by the length of the run,
followed by the value of each member. For example, a run of 5’s having length twelve is
encoded as 0 12 5.

(3) Any run of length two or more whose members have value zero is encoded as in (2). For
example, a run of 0’s having length three is encoded as 0 3 0.

(4) A run of length one whose member is zero is encoded as 0 0.

Following these rules, the sequence S shown above is encoded as

T =37020065429429030822200048 75112

For this particular example, in which the runs are all fairly short, very little compression is
achieved. (S contains 28 values, and 7' contains almost as many, 26.)



Develop a program that, given a sequence of nonnegative integers, produces its run-length
encoding. For example, given S (as shown above) as input, it would produce T' (as shown
above) as output.

Input

The first line contains a positive integer n indicating how many sequences are to be run-
length encoded. The next 2n lines contain descriptions of the sequences, with each description
occupying two lines. The first line of each description contains a positive integer m (no greater
than 100) equal to the length of (i.e., number of elements in) the sequence. The second line
contains m nonnegative integers comprising the sequence, separated by spaces.

Output

For each sequence given as input, echo it on one line, display the result of run-length encoding
it on the next line, and make the next line blank.

Sample Input:

444444071 715555
20
10011111111112340002

Resultant output:

444444071 715555
064007171045

11111111112340002
001012340302
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Problem 4: Intersection of Two Lines

Recall that, in Euclidean geometry, any two non-parallel lines intersect at exactly one point.
Develop a program that, given two such lines, identifies their point of intersection. Each line
is described by two points that lie on it.

Hint: Given the coordinates of two points (having distinct x-coordinate values), it is not
difficult to compute m and b such that the line passing through them is characterized by the
equation y = max + b (called the slope-intercept form). Given two such equations y = m;x + b;
(1 =1,2), it is not difficult to compute the unique pair (xg, yo) that satifies both.

Input: So as not to confuse the notion of a line of input data with the notion of a line on the
cartesian plane, here we shall refer to the former as an “input record”.

The first input record contains a positive integer n indicating how many pairs of lines are
subsequently described. Each subsequent input record describes a pair of (non-parallel) lines.
Each line is described by two points that lie on it. Each point is described by its z- and y-
coordinates, respectively. Hence, each input record (after the first) contains eight real numbers,
T1,Y1,%2,Y2, - - -, T4, Y4, describing the four points p; = (z;,y;), i = 1..4. It is to be understood
that the two lines thereby described are L; :p<1_p>2 and Lo :pgl.

Output: For each pair of lines given as input, the point at which the two intersect is to be
displayed in the usual (z,y) format. (See sample output below.)

Sample input:

2.05.05.01.0-1.0 -5.0 -1.0 4.0
-2.01.04.01.06.48.7 -0.6 3.0
7.4 -3.8 -1.05.50.04.01.40.0
7.4 -3.88.05.51.00.0-1.40.0
10.0 1.0 0.0 0.0 0.0 -1.0 10.0 0.1

Resultant output:
(-1.0,9.0)
(-3.05614,1.0)
(-0.22449,4.641399)
(7.645161,0.0)
(100.0,10.0)
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Problem 5: Polynomial Derivative

The central notion in Differential Calculus, which is concerned with rates of change (e.g., of
one quantity in relation to another), is the derivative.

Suppose that we have a function f mapping real numbers to real numbers, such as is illustrated
below in the usual way (i.e., by a curve drawn on the cartesian plane).

\J o

Figure 1: Curve Depicting a Function f

Let a be a real number. Suppose that, as in the figure, we draw a tangent line to the curve at
x = a (i.e., a line that passes through the point (a, f(a)) and has the same slope as does the
curve at that point). Then the derivative of f at a is defined to be that slope.

This gives rise to the notion of the derivative function of f (usually abbreviated to “derivative
of f7 and denoted by f), defined by

f'(x) = the derivative of f at x

In other words, for all z, f'(z) is the slope of the line tangent to f at the point (z, f(z)).

Remarkably, in many cases, given an algebraic description of a function (that is, an expression
involving the variable x, numeric constants, applications of addition, multiplication, etc., and
perhaps well-behaved functions from trigonometry (e.g., sin)), one can calculate an algebraic
description of its derivative using simple transformation rules.



Among the kinds of functions for which calculating the derivative is easy are those described
by polynomials. A polynomial is an expression of the form

2 3

co + c1x + cx” + c3x® + - +ck$k

in which each of the ¢;’s (referred to as the coefficients) is a real constant. That is, it is a sum
of terms, each of which is a constant multiplied by z raised to a nonnegative integer power.
The largest power (in the example, k), is referred to as the degree of the polynomial. Such an
expression describes a function of z, of course. It turns out that the derivative of this function
is described by the polynomial

2

c1 + 2cox + 3czxt + dega® + -+ —I-kckxk_l

That is, each term c,2" in f becomes r-¢,2" ! in f’. In displaying a polynomial, the standard
practice is to avoid the use of unary minus signs and to omit any terms having a zero coefficient
(unless there is only one term). For example, the polynomial

—2 + =3z + 0z% + 1324

would be written as
—2 — 3z + 132*

which avoids using the unary minus in —3 and omits the term 0z2. (As —2 is the first term,
its unary minus remains.)

Develop a program that, given as input a polynomial with integer coefficients describing a
function f, outputs the polynomial describing its derivative, f’.

Input: The first line contains a positive integer n indicating the number of polynomials sub-
sequently given. Each polynomial is described on two lines, the first of which is a nonnegative
integer k, 0 < k < 20, indicating the polynomial’s degree. On the following line appear the
k + 1 integer coeflicients, in the order c¢gy, ci, ..., cg.

Output: For each polynomial given as input, display it on one line, its derivative on the next
line, and make the next line blank.

Sample input:

4 - 2x + 12x72 - x74 + 3x°5
-2 + 24x - 4x°3 + 15x74

14
0
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Problem 6: Triangle Path Maximum Sum

Consider the following triangular matrix of numbers.

= 00 D O o ;
D OO W N
N o © o1
o N b e

2
40
03

©

7

A path through the matrix includes exactly one element from each row. For two elements from
adjacent rows to be in the same path requires that one element be either directly below the
other, or else below it and one place to the right. In other words, in traversing a path from the
top row to the bottom, at each step you must move either to the element directly below or to
that element’s immediate right neighbor.

The sum of a path is simply the sum of the elements in that path. In the 7-row matrix depicted
above, the sum of the path whose elements are underlined is 37, which is the maximum of the
sums of all 64 paths.

Develop a program that, given a triangular matrix, computes the maximum of the sums of all
the paths through it.

Input: The first line contains a positive integer n indicating how many triangular matrices are
subsequently described. Each matrix is described on m + 1 lines, where the first line contains
m (with m > 0) and each of the next m lines contains the elements of one row of the matrix.
For i satisfying 1 < ¢ < m, the ith row contains exactly i integers, separated by one or more
spaces.

Output: For each matrix given as input, the maximum of the sums of all the paths through
it should be displayed on a line in a format consistent with the sample output shown below.

Caution: The input data used for testing your program will include matrices sufficiently large
to ensure that a program that traverses all its paths (or even a relatively small fraction of
them) will require years of execution time before completing. (Note that a matrix of n rows
has 2"~ ! distinct paths through it. If, say, n = 100 and a program were to compute the sums
of paths at a rate of 1000 paths per second, it would take billions of years before all sums had
been computed.) Thus, for you to earn credit for solving this problem will require that you
devise a program that employs a much more efficient approach.

Sample input and output appear on the next page ...



Sample input: Resultant output:

3 37
7 52
5 191
6 2
038
4951
84042

105740
9425037
8

3

5 -2
-3 4 8

7 2-1 5

2 914 -2 17

10 -3 8 6 2 -2

8 -2 5 713 -9 -5
-5 0 3 6-2 5 913
14

13

-4 14

9 8 3

41 15 32 -3 16 7 b5
-12 0 3 &5 -7 9 1 -4
o 8 5 3r 2 -1 8 -9 14
9 17 -21 -1 5 16 3 19 5 15
25 4 -1 5 12 -6 6 7 9 3 1

0 5 9 -11 4 2 10 -3 2 0 15 0
2 -1 8 4 23 3 -1 4 -5 12 -8 13 53
5 7 -6 20 0 15 2 16 -10 2 29 2 -3

10
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Problem 7: Prefix to Fully-Parenthesized Infix

Arithmetic expressions are composed of numerals, variables, operators, and parentheses. Here
are four examples:

r+5—y 3B*xB+y)—= x (T+2zx4)—y/2

All but the third would be ambiguous except for the fact that we assume that the multiplicative
operators (* and /) have higher precedence than the additive operators (+ and —) (e.g., so
that 7 + z * 4 means the same thing as 7 4+ (z *x 4)) and that operators in the same category
associate to the left (e.g., so that x + 5 — y means the same thing as (z +5) — v.

Suppose that we had no such rules of precedence or association. Then we would probably
resort to using fully-parenthesized expressions in which, for every operator, there appears a
corresponding pair of parentheses that enclose that operator’s scope. The fully-parenthesized
equivalents of the expressions above are

((z+5) —y) (5% (3 +y)) — ) x (T+(zx4)) = (y/2))

By convention, we write arithmetic expressions using infix notation, which is to say that oper-
ators appear in between their two operands. An alternative notation is called prefiz, in which
each operator precedes its two operands. Interestingly, expressions in prefix notation have no
need for parentheses at all, even absent any rules of operator precedence. For example, using
prefix notation the expressions above would be written as follows:

— +xby —%35 + 3yx x — 4+ 7 xz4/y?2

Develop a program that, given a prefix arithmetic expression, translates it to the corresponding
fully-parenthesized infix expression.

Input: The first line contains a positive integer n indicating how many prefix arithmetic
expressions will appear on succeeding lines. Each of the next n lines will contain one such
expression. Each item (i.e., operator symbol, numeric literal, or variable name) appearing in
an expression will be separated from its neighbor(s) by a space. The only four operators that
may appear are those appearing in the examples above. Variables names will be single letters.
All numeric literals will be sequences of one or more decimal digits.

Output: For each given prefix expression, output it on one line, its equivalent fully-parenthesized
infix expression on the next line, followed by a blank line. There should be a single space on
each side of each operator symbol, but no other spaces.

11



Sample input:

+ + N ¥ O

15/ +z79/x2

Resultant output:

+6y
(6 + y)

+ x 2 34
((2 * 3) +4)

* 2 + 3 4
(2 % (3 + 4))

* + 2 3 4
((2 + 3) * 4)

*x + 15 / + 279/ x 2

(15 + ((z+7) /9)) * (x/ 2))

12
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Problem 8: Binary Scientific Notation

Note: This problem is written under the assumption that the reader is familiar with the binary
(i.e., base two) numeral system for representing real numbers. See the appendix that follows
this problem. End of note.

Scientific notation is a convenient way of expressing numbers having very small or very large
magnitudes. For example, .327x10'? and .1063 x 10~7 are more readable than 327,000, 000, 000
and 0.00000001063, respectively. In these two examples, .327 and .1063 are referred to as
the significands (as they convey the significant digits); meanwhile, 12 and —7 are the
exponents and 10 is the base. Both of these examples are in normalized form, meaning
that the first non-zero digit is in the tenth’s column of the significand (i.e., immediately to the
right of the radix point). The number of digits in a significand is a measure of its precision.

The standard scheme by which computers encode real numbers (as opposed to integers) is
known as floating-point format, which is based on scientific notation. However, computers
use the binary alphabet {0,1} (as opposed to the decimal alphabet {0,1,2,...,9}) to encode
numbers (as well as every other kind of data).

Examples of normalized binary scientific notation are .101101 x 273 and .110 x 2°, which
correspond to .000101101 and 11000, respectively. (Actually, these are in a hybrid form in
which the significand is in binary but the exponent is in decimal.) Notice how the exponents
—3 and 5 have the effects of moving the radix point three places to the left and five places to
the right, respectively, which is analogous to the effect of the exponent in decimal scientific
notation.

Develop a program that, given decimal numerals describing a positive real number r and a
desired precision p, produces a binary significand m = .1babs...b, (where each b; is either 0
or 1) and a decimal integer exponent e such that, if m’ x 2¢ equals r “exactly”, then m' =
Abobs ... bpbpt1bpia . ... (In other words, m is obtained by truncating m’ to its first p bits.)

Input: The first line contains a positive integer n indicating how many instances of the problem
are described on the succeeding n lines. Each instance of the problem is described on a single
line containing a positive real number r and a positive integer p, playing the roles described in
the preceding paragraph.

Output: For each given instance (r, p) of the problem, echo r, followed by a colon and a space,
followed by a p-bit significand m (with a 1 bit in the 27! column), followed by an exponent e
(in decimal), where m and e satisfy the conditions mentioned above.

Sample input and output are found on the next page ...

13



Sample input: Resultant output:

12

24.875 9 24.875: .110001110 5
24.875 8 24.875: .11000111 5
24.875 7 24.875: .1100011 5
24.875 6 24.875: .110001 5
24.875 3 24.875: .110 5

259.5 12 259.5: .100000011100 9
259.5 5 259.5: .10000 9
0.004 7 0.004: .1000001 -7
0.51 0.5: .10

0.085 7 0.085: .1010111 -3
0.085 5 0.085: .10101 -3
0.085 4 0.085: .1010 -3

14
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Appendix: Binary Numerals

To remind you how the decimal (i.e., base ten) numeral system works, take as an example
the (decimal) numeral 203.57. The number it represents depends not only upon the values of
the digits that appear in it, but also upon their positions relative to the radiz point. We refer
to the positions to the left of the radix point as being the ones’, tens’, hundreds’, etc., columns,
corresponding to the nonnegative powers of 10: 10°, 10!, 102, etc. The positions to its right are
the tenths’, hundredths’, thousandths’, etc., columns, corresponding to the negative powers of
10: 1071, 1072, 1073, etc. Thus, considering the digits in right-to-left order,

20357 = 7-1072 + 5-107" + 3-10° + 0-10" + 2-10°

The binary numeral system works the same way, except that only the binary digits (i.e., “bits”)
0 and 1 may appear in a numeral and the column “place values” are the powers of two rather
than of ten. For example (using subscript 2 to emphasize that this is a binary numeral),

1001.011y = 1-23 + 1272 4+ 0-27" + 1.2 + 0.2 + 0-2%2 + 1.23

To find the binary numeral representing a positive real number x, we can split z into its integer
and fractional parts, find the binary numerals representing each one, and then concatenate
them.

In general, the binary numeral representing integer k > 0 is zb, where b = 0 if k is even and
b=1if k is odd, and z is the binary numeral representing |k/2] (i.e., the integer part of k/2).
Thus, starting with k, we repeatedly divide by two (until arriving at zero) and concatenate the
remainders from right to left. Here we illustrate using k = 41:

41/2 = 20, remainder 1
20/2 = 10, remainder 0
10/2 = 5, remainder 0
5/2 = 2, remainder 1
2/2 = 1, remainder 0
1/2 0, remainder 1

Placing the remainders from right to left in the order in which they were generated, we get
101001, which is the binary numeral corresponding to (decimal numeral) 41.

Coninuted on next page ...

15



Now we consider how to find a binary numeral representing a real number y satisfying 0 < y < 1.
In general, this numeral is .bz, where b = |2y]| and .z is the binary numeral that represents
2y — b. Here we illustrate using y = .35:

12-0.35] = [0.7] =0=101;2-035—b, =0.7—0=0.7
12:07] =[14] =1=105;2-07—by=14—-1=04
12:04] =[0.8] =0=1b3;2-04—b3=08—-0=038
12:08/ =[1.6] =1=104;2-08—by=16—-1=06
12:06] =[1.2] =1=105;2-06—b5 =1.2—1=10.2
12:02] = [04] =0=1b;2-02—bg=04—0=0.4

At this point we notice that we have arrived at y = 0.4 for a second time, four steps after
the first time, which means that the last four steps (and hence bits b3 through bg) will repeat
forever! The binary numeral representing .35 is thus .010110, the bar indicating that the bit
sequence under it repeats forever. This illustrates that a real number that can be represented
finitely using a decimal numeral may require a non-finite representation as a binary numeral.
Indeed, this is the usual case rather than an exception.

Putting together the binary representations of 41 and 0.35, we get that 41.35 = 101001.0101102.

16



