
HARDWARE/SOFTWARE CO-DESIGN FOR REAL-
TIME PHYSICAL MODELING

B. Bishop, T. P. Kelliher, M. J. Irwin

Department of Computer Science and Engineering
The Pennsylvania State University
University Park, PA 16802 USA

ABSTRACT

Physical modeling of a mass-spring system allows for realistic
object motion and deformation in a virtual environment. Previous
work in this type of physical modeling relies on general-purpose
hardware, and cannot offer the performance necessary for real-
time human-machine interaction. In this paper, we consider the
co-design of software and hardware in order to achieve real-time
physical modeling.

1. Previous Work

1.1 Software/Algorithms

There are multiple approaches to physical modeling, each having
its own merits for different types of simulations. Rigid body
techniques are computationally efficient, but can only model stiff
objects. Mass-spring simulation is useful for modeling many
different types of objects, but has been too computationally
intensive for real-time use. Additional techniques exist for
modeling liquids and gasses.

In rigid body simulation[1][2], the computation can be simplified
because the objects are not allowed to deform. Inertial
information can be precomputed and then used to determine
object motion upon collision. Collision detection still represents a
significant computational challenge, however there are techniques
to ease this burden (see below).

In a mass-spring simulation[3][4], the objects are represented as a
set of mass points connected by springs. This representation is
useful for modeling many different materials. For example, a
marshmallow can be modeled by using highly damped springs.
Other materials could include Jell-O, cloth, metal or stone.

Stiff materials require stiff springs. In order to ensure stability,
advanced numerical methods can be applied, or alternately large
numbers of simulation steps can be performed using simpler
techniques.

Collision detection can be very computationally intensive.
However, it is possible to make use of the fact that collisions are

fairly rare. A great deal of computation can be saved by ruling out
pairs of objects that cannot possibly collide. This “pruning” can
be accomplished through bounding box checking.

One approach for bounding box checks is to check every object
bounding box against every other object bounding box. For N
objects this gives N2 checks. However, there are techniques[5]
that reduce this number.

Once a possible collision has been detected between two objects
using bounding boxes additional work is needed. One popular
approach is to check if any points from one object are contained
in the other object. If these objects are convex, this test can be
performed very efficiently, since the test must determine only if
the point is “under” each plane defining the object. This
technique does not work for mass-spring simulations, as it is
difficult to guarantee that convex objects remain convex as
deformations occur.

1.2 Hardware/Architecture

This section briefly sketches current and emerging
hardware/architectural support for physical modeling.

Both AMD and Intel have recognized the value of high-
performance floating point for interactive 3D applications. This
is in the form of 3Dnow![6] and KNI[7] respectively.

These techniques are general-purpose processor extensions,
which increase FLOPS through the use of specialized high-
bandwidth floating-point units.

Some 3D accelerators[9] are starting to include hardware support
for transform and lighting. This hardware acceleration for object
transformation could be useful in rigid body simulations, however
a significant penalty exists for transferring object data back to the
CPU for collision detection.

2. Hardware/Software Co-design

We achieved a high degree of synergy during the system’s
software and hardware design. The design effort began with
writing a demonstration computer graphics application. From
this we synthesized an instruction set architecture and designed a

pipeline supporting the floating point and collision detection
computations. The complexity of the resulting pipeline caused
us to reorganize both hardware and software for the proof-of-
concept implementation.

We discuss further design considerations in the remainder of this
section.

2.1 Software Considerations

We have chosen to implement a real-time mass-spring simulation.
Each step of this simulation can be broken down into the
following sub-steps:

• Spring force computation
• Collision detection pruning
• Collision detection

In spring force computation, velocity increments are generated for
each mass point as a result of the connected springs acting on it.
These springs respond to any displacement from their ideal
length according to Hookes law [11].

In collision detection pruning we try to reduce the number of
object pairs that must be considered for collision detection.

Since we are working with a mass-spring system, the approach
for collision detection described above cannot be used. Instead,
we have developed a new approach. In our approach, when an
object is defined, each point is associated with a line segment in
the object (see fig. 1 for a graphical description). That line
segment is then checked against the faces of the other object for
intersections. If there is an intersection, a collision has occurred.

Fig. 1: Debug representation of cube object

2.2 Hardware Considerations

The unique features of this system are that we must process a
large amount of data, and the computation is the same on each
simulation step. Since the computation process does not change,
we can consider a pipeline organization. This organization allows

us to effectively address the other feature of this system – large
amounts of data. In a pipeline organization, memory bandwidth is
more efficiently used since intermediate values can be passed
between pipeline stages without returning to memory.
Additionally, the pipeline organization allows for very high
utilization of processing capability.

2.3 “Coping” with the Hardware

This pipelined organization introduces some problems that must
be addressed in software, however. The main problems with the
static pipeline organization are data hazards[8] and lack of
conditional execution.

Using the algorithm outlined in 2.1, each data set in the pipeline is
very independent. However, with collision detection for example,
only the maximum velocity increment for a given point among all
data sets is considered. This results in data hazards when
updating the maximum velocity increment. This hazard can be
addressed by slight modification of the pipeline to allow for
operand forwarding.

Another potential problem is the lack of conditional execution,
which is necessary in the collision detection pruning phase of
computation. This problem can be solved by pruning on the host
CPU or through the use of a simple embedded processor since
pruning is not generally as computationally intense as the other
steps.

2.4 Dealing with Instability

One of the biggest problems in a mass-spring simulation is in
achieving the necessary degree of stability. Since we perform
collision detection as well as spring force computation on every
iteration, it is not efficient to simply increase the number of
iterations for the desired degree of stability.

One possible solution to this problem is to perform multiple
spring force computations per collision detection computation.
This is computationally efficient since spring force computation
is relatively simple. However, collision detection fails since
objects can slowly drift into one another during the spring force
computation steps. This can be addressed by increasing the
velocity increment for resolving collisions. However, increasing
this increment leads to unrealistic vibration-like behavior.

One additional solution is through the use of techniques for
breaking and bending of springs. When a velocity increment
exceeds a certain threshold, the spring stiffness can be set to zero
(breaking) or the ideal spring length can be modified (bending).
The “plate demo” at [10] is an example of breakable springs.

3. Proof-of-concept – SPARTA

The SPARTA project (Simulation of Physics on a Real-Time
Architecture) is an effort to develop a hardware/software

experimental system for real-time physical modeling. Please see
[10] for additional information about the project including source
code, executables, and mpeg movies. The project has been split
into the following stages of increasing complexity:

3.1 General-purpose CPU Implementation

This is an implementation of the algorithms outlined in 2.1
running under Linux and Windows. This implementation is meant
to verify algorithm correctness. With heavy optimization, near
real-time performance can be achieved only for very simple
scenes. All of the images and movies from [10] were generated in
this implementation. Figures 2-5 show one such animation
sequence.

3.2 Compiled HDL Implementation

The goal of this implementation is to quickly verify the
correctness of the pipeline organization. A hardware description
language simulation is ideal, since changes can be made easily and
verification can be accomplished through simulation. Since the
pipeline design will be rather large and complex, a compiled HDL
simulation would best ensure fast simulation.

3.3 FPGA Implementation

The goal of the Field Programmable Gate Array implementation
is to develop a working prototype, which can at least partially
accelerate the software beyond what is possible in 3.1.

The dominant concern in this implementation is density. The
computational pipeline is very floating point intensive. Floating
point units are difficult to implement in FPGAs due to routing
overhead in barrel shifters. A number of approaches will be used
to minimize this density problem, including reducing floating
point precision and implementing only a partial pipeline. For
example, the pipeline could perform only spring force
computation with collision detection performed on the system
CPU.

3.4 ASIC Implementation

The Application Specific Integrated Circuit implementation is the
eventual goal of the SPARTA project. This implementation
should be able to achieve tremendous speedups over 3.1. These
speedups will be a result of efficient pipeline and memory
organization in conjunction with the fast clock rates that are
possible in ASICs.

4. Summary

We have described a novel real-time system for physical
modeling, and have contrasted it with previous work. We have
discussed the unique features of this experimental system from
both a hardware and software perspective. Considering each of

these perspectives, we present a codesign that is optimized for
real-time physical modeling.

5. REFERENCES

[1] W. Armstrong, M. Green, ``The dynamics of articulated
rigid bodies for purposes of animation'', The visual
computer, Springer-Verlag, 1985.

[2] D. Baraff, ``Fast Contact Force Computation for
Nonpenetrating Rigid Bodies'', Computer Graphics
Proceedings, July 1994.

[3] D. Baraff, A. Witkin, ``Large Steps in Cloth Simulation'',
Computer Graphics Proceedings, July 1998.

[4] D. Terzopoulos, J. Platt, A. Barr, K. Fleischer, ``Elastically
Deformable Models'', Computer Graphics , Vol. 21, No. 4,
July 1987.

[5] M.Lin, S. Gottschalk, ``Collision Detection between
Geometric Models: A Survey'', Proc. IMA Conference on
Mathematics and Surfaces, 1998.

[6] Inside 3DNow! Technology
http://www.amd.com/products/cpg/k623d/inside3d.html

[7] Discover the New PentiumIII Processor
http://developer.intel.com/design/PentiumIII/prodbref/

[8] J. Hennessy, D. Patterson, “Computer Architecture: A
Quantitative Approach”, Morgan Kaufmann Publishers, San
Mateo, CA.

[9] NVIDIA GeForce256
http://www.nvidia.com/Geforce256.nsf

[10] The SPARTA project http://www.cse.psu.edu/~mdl/sparta/
[11] D. Halliday, R. Resnick, J. Walker, Fundamentals of

Physics, John Wiley and Sons, 1997.

Fig. 2: Multiple Block Animation (frame 1)

Fig. 3: Multiple Block Animation (frame 100)

Fig. 4: Multiple Block Animation (frame 200)

Fig. 5: Multiple Block Animation (frame 300)

