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ABSTRACT 

Physical modeling of a mass-spring system allows for realistic 
object motion and deformation in a virtual environment. Previous 
work in this type of physical modeling relies on general-purpose 
hardware, and cannot offer the performance necessary for real-
time human-machine interaction. In this paper, we consider the 
co-design of software and hardware in order to achieve real-time 
physical modeling. 

 

1. Previous Work 
 

1.1 Software/Algorithms  

There are multiple approaches to physical modeling, each having 
its own merits for different types of simulations. Rigid body 
techniques are computationally efficient, but can only model stiff 
objects. Mass-spring simulation is useful for modeling many 
different types of objects, but has been too computationally 
intensive for real-time use. Additional techniques exist for 
modeling liquids and gasses. 

In rigid body simulation[1][2], the computation can be simplified 
because the objects are not allowed to deform. Inertial 
information can be precomputed and then used to determine 
object motion upon collision. Collision detection still represents a 
significant computational challenge, however there are techniques 
to ease this burden (see below). 

In a mass-spring simulation[3][4], the objects are represented as a 
set of mass points connected by springs. This representation is 
useful for modeling many different materials. For example, a 
marshmallow can be modeled by using highly damped springs. 
Other materials could include Jell-O, cloth, metal or stone.  

Stiff materials require stiff springs. In order to ensure stability, 
advanced numerical methods can be applied, or alternately large 
numbers of simulation steps can be performed using simpler 
techniques. 

Collision detection can be very computationally intensive. 
However, it is possible to make use of the fact that collisions are 

fairly rare. A great deal of computation can be saved by ruling out 
pairs of objects that cannot possibly collide. This “pruning” can 
be accomplished through bounding box checking.  

One approach for bounding box checks is to check every object 
bounding box against every other object bounding box. For N 
objects this gives N2 checks. However, there are techniques[5] 
that reduce this number. 

Once a possible collision has been detected between two objects 
using bounding boxes additional work is needed. One popular 
approach is to check if any points from one object are contained 
in the other object. If these objects are convex, this test can be 
performed very efficiently, since the test must determine only if 
the point is “under” each plane defining the object. This 
technique does not work for mass-spring simulations, as it is 
difficult to guarantee that convex objects remain convex as 
deformations occur. 

1.2 Hardware/Architecture  

This section briefly sketches current and emerging 
hardware/architectural support for physical modeling.   

Both AMD and Intel have recognized the value of high-
performance floating point for interactive 3D applications. This 
is in the form of 3Dnow![6] and KNI[7] respectively. 

These techniques are general-purpose processor extensions, 
which increase FLOPS through the use of specialized high-
bandwidth floating-point units.  

Some 3D accelerators[9] are starting to include hardware support 
for transform and lighting. This hardware acceleration for object 
transformation could be useful in rigid body simulations, however 
a significant penalty exists for transferring object data back to the 
CPU for collision detection. 

 

2. Hardware/Software Co-design 

We achieved a high degree of synergy during the system’s 
software and hardware design.  The design effort began with 
writing a demonstration computer graphics application.  From 
this we synthesized an instruction set architecture and designed a 



pipeline supporting the floating point and collision detection 
computations.  The complexity of the resulting pipeline caused 
us to reorganize both hardware and software for the proof-of-
concept implementation. 

We discuss further design considerations in the remainder of this 
section. 

2.1 Software Considerations  

We have chosen to implement a real-time mass-spring simulation. 
Each step of this simulation can be broken down into the 
following sub-steps: 

• Spring force computation 
• Collision detection pruning 
• Collision detection 

In spring force computation, velocity increments are generated for 
each mass point as a result of the connected springs acting on it. 
These springs respond to any displacement from their ideal 
length according to Hookes law [11]. 

In collision detection pruning we try to reduce the number of 
object pairs that must be considered for collision detection.  

Since we are working with a mass-spring system, the approach 
for collision detection described above cannot be used. Instead, 
we have developed a new approach. In our approach, when an 
object is defined, each point is associated with a line segment in 
the object (see fig. 1 for a graphical description). That line 
segment is then checked against the faces of the other object for 
intersections. If there is an intersection, a collision has occurred. 

  

Fig. 1: Debug representation of cube object 

2.2 Hardware Considerations  

The unique features of this system are that we must process a 
large amount of data, and the computation is the same on each 
simulation step. Since the computation process does not change, 
we can consider a pipeline organization. This organization allows 

us to effectively address the other feature of this system – large 
amounts of data. In a pipeline organization, memory bandwidth is 
more efficiently used since intermediate values can be passed 
between pipeline stages without returning to memory. 
Additionally, the pipeline organization allows for very high 
utilization of processing capability. 

2.3 “Coping” with the Hardware  

This pipelined organization introduces some problems that must 
be addressed in software, however. The main problems with the 
static pipeline organization are data hazards[8] and lack of 
conditional execution. 

Using the algorithm outlined in 2.1, each data set in the pipeline is 
very independent. However, with collision detection for example, 
only the maximum velocity increment for a given point among all 
data sets is considered. This results in data hazards when 
updating the maximum velocity increment. This hazard can be 
addressed by slight modification of the pipeline to allow for 
operand forwarding. 

Another potential problem is the lack of conditional execution, 
which is necessary in the collision detection pruning phase of 
computation. This problem can be solved by pruning on the host 
CPU or through the use of a simple embedded processor since 
pruning is not generally as computationally intense as the other 
steps. 

2.4 Dealing with Instability 

One of the biggest problems in a mass-spring simulation is in 
achieving the necessary degree of stability. Since we perform 
collision detection as well as spring force computation on every 
iteration, it is not efficient to simply increase the number of 
iterations for the desired degree of stability. 

One possible solution to this problem is to perform multiple 
spring force computations per collision detection computation. 
This is computationally efficient since spring force computation 
is relatively simple. However, collision detection fails since 
objects can slowly drift into one another during the spring force 
computation steps. This can be addressed by increasing the 
velocity increment for resolving collisions. However, increasing 
this increment leads to unrealistic vibration-like behavior. 

One additional solution is through the use of techniques for 
breaking and bending of springs. When a velocity increment 
exceeds a certain threshold, the spring stiffness can be set to zero 
(breaking) or the ideal spring length can be modified (bending). 
The “plate demo” at [10] is an example of breakable springs. 

3. Proof-of-concept – SPARTA 

The SPARTA project (Simulation of Physics on a Real-Time 
Architecture) is an effort to develop a hardware/software 



experimental system for real-time physical modeling. Please see 
[10] for additional information about the project including source 
code, executables, and mpeg movies. The project has been split 
into the following stages of increasing complexity: 

3.1 General-purpose CPU Implementation 

This is an implementation of the algorithms outlined in 2.1 
running under Linux and Windows. This implementation is meant 
to verify algorithm correctness. With heavy optimization, near 
real-time performance can be achieved only for very simple 
scenes. All of the images and movies from [10] were generated in 
this implementation. Figures 2-5 show one such animation 
sequence. 

3.2 Compiled HDL Implementation 

The goal of this implementation is to quickly verify the 
correctness of the pipeline organization. A hardware description 
language simulation is ideal, since changes can be made easily and 
verification can be accomplished through simulation. Since the 
pipeline design will be rather large and complex, a compiled HDL 
simulation would best ensure fast simulation. 

3.3 FPGA Implementation 

The goal of the Field Programmable Gate Array implementation 
is to develop a working prototype, which can at least partially 
accelerate the software beyond what is possible in 3.1. 

The dominant concern in this implementation is density. The 
computational pipeline is very floating point intensive. Floating 
point units are difficult to implement in FPGAs due to routing 
overhead in barrel shifters. A number of approaches will be used 
to minimize this density problem, including reducing floating 
point precision and implementing only a partial pipeline. For 
example, the pipeline could perform only spring force 
computation with collision detection performed on the system 
CPU. 

3.4 ASIC Implementation 

The Application Specific Integrated Circuit implementation is the 
eventual goal of the SPARTA project. This implementation 
should be able to achieve tremendous speedups over 3.1. These 
speedups will be a result of efficient pipeline and memory 
organization in conjunction with the fast clock rates that are 
possible in ASICs. 

4. Summary 

We have described a novel real-time system for physical 
modeling, and have contrasted it with previous work. We have 
discussed the unique features of this experimental system from 
both a hardware and software perspective. Considering each of 

these perspectives, we present a codesign that is optimized for 
real-time physical modeling.  
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Fig. 2: Multiple Block Animation (frame 1) 

 
 

 
Fig. 3: Multiple Block Animation (frame 100) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Fig. 4: Multiple Block Animation (frame 200) 

 
 

 
Fig. 5: Multiple Block Animation (frame 300) 

 


