Huffman Compression: An Example

Suppose that we have a bit string x that is to be compressed. Suppose, further, that we decide
to view z as being composed of 3-bit blocks. (For convenience, we assume that the length
of x is evenly divisible by three.) We interpret each block as a single character. (Under this
scenario, there are eight characters in the alphabet, one for each of the distinct bit strings of
length three.) The frequency with which each of the characters occurs in x is given in the

following table. (For convenience, we refer to the eight characters as a,b,. .., h, as indicated in
the table.)
Character Frequency Character Frequency
____________ | —mmmmmmm o e

a (000) 127 e (100) 5%

b (001) 10% f (101) 8%

c (010) 25Y% g (110) 9%

d (011) 29% h (111) 2%

(a) Construct a Huffman tree corresponding to these frequencies.

Solution:

e h f a d b g c
5 2 8 12 29 10 9 25
\ / / / / \ / /
7 / / / \ / /
\ / / / 19 /
15 / / \ /
\ / / \ /
\ / / 44
27 / /
\ / /

\ / /
56 /
\ /
\ /
\ /
\ /
\ /
\ /
\ /
N/
100

(b) Show the binary encoding of each character (consistent with the tree constructed in (a)),
i.e., show the resulting Huffman code. Note: In order to ensure that the correct answer is



unique, follow this rule in using the tree constructed in (a) to determine the encoding of each
character: From each non-leaf node there are two edges connecting it to its children; one edge
is to be labeled 0 and the other 1. Use 0 to label the edge that goes to the subtree having the
leaf with the alphabetically smallest label (among all labels in the two subtrees). For example,
if a node’s two children are the roots of subtrees whose leaves are labeled by ¢, d, and e and
by a and f, respectively, then the edge into the latter subtree should be labeled 0, because a
is the smallest among all the labels in the two subtrees.

Solution:
a : 000 e : 00100
b : 100 f : 0011
c: 11 g : 101
d : 01 h : 00101

(¢) Compute the ratio between the lengths of the compressed text and the original. Show your
work. Keep in mind that three bits were used to store each symbol in the original bit string,
whereas the number of bits used, on average, for storing a symbol in the compressed version is
the sum

Z len(x) - freq(x)

ze{a,b,...,h}

where len(z) is the length (in bits) of the code for z and freg(x) is the frequency with which
x occurs in the original file.

Solution:

er{a b,...,h} len(x) fTeCJ( )

= (3)(12) + (3)(-1) + (2)(:25) + (2)(:29) + (5)(.05) + (4)(.08) + (3)(.09) + (5)(.02)
— (2)(.25 4+ .29) + (3)(12 + .1 +.09) + (4)(.08) + (5)(.05 + .02)

(2)(:54) + (3)(:31) + (4)(.08) + (5)(.07)

1.08 +0.93 +0.32 + 0.35

= 2.68

The ratio is thus 2.68/3.0, which is slightly less than 90%. Thus, not much compression was
realized. Huffman coding typically works much better when a larger alphabet is chosen, such
as when the file is interpreted as being composed of 8-bit blocks (which makes for an alphabet
of 256 symbols) or when (in the case of a file of text) the alphabet is taken to consist of all the

words (e.g., the, cat, computer), punctuation symbols (e.g., “,”, “.”), and whitespace characters
(e.g., space, tab, newline) occurring in the text.



