
1

Introduction 
and  

Chapter One: Fundamentals

Formal Language, chapter 1, slide 1

2

No one who loves language can take much pleasure in the
prospect of studying a subject called formal language. It

sounds suspiciously abstract and reductionistic. It sounds
as if all the transcendent beauty of language will be

burned away, fired under a dry heat of definitions and
theorems and proofs, until nothing is left but an ash of
syntax. It sounds abstract—and it is, undeniably. Yet

from this abstraction arise some of the most beautiful and
enduring ideas in all of computer science.

Formal Language, chapter 1, slide 2

3

Why Study Formal Language?

• Connected...
– ...to many other branches of knowledge

• Rigorous...
– ...mathematics with many open questions at the frontiers

• Useful...
– ...with many applications in computer systems, particularly in

programming languages and compilers
• Accessible...

– ...no advanced mathematics required
• Stable...

– ...the basics have not changed much in the last thirty years

Formal Language, chapter 1, slide 3

4

Algebraists use the words group, ring, and field in technical
ways, while entomologists have precise definitions for

common words like bug and fly. Although it can be slightly
confusing to overload ordinary words like this, it's usually
better than the alternative, which is to invent new words.
So most specialized fields of study make the same choice,

adding crisp, rigorous definitions for words whose common
meaning is fuzzy and intuitive.  

 
The study of formal language is no exception. We use crisp,
rigorous definitions for basic terms such as alphabet, string,

and language.

Formal Language, chapter 1, slide 4

5

Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages

Formal Language, chapter 1, slide 5

6

Alphabets

• An alphabet is any finite set of symbols
– {0,1}: binary alphabet
– {0,1,2,3,4,5,6,7,8,9}: decimal alphabet
– ASCII, Unicode: machine-text alphabets
– Or just {a,b}: enough for many examples
– {}: a legal but not usually interesting alphabet

• We will usually use Σ as the name of the
alphabet we’re considering, as in Σ = {a,b}

Formal Language, chapter 1, slide 6

7

Alphabets Uninterpreted

• Informally, we often describe languages
interpretively
– “the set of even binary numbers”

• But our goal is to describe them rigorously,
and that means avoiding interpretations
– “the set of strings of 0s and 1s that end in 0”

• We don’t define what a symbol is, and we
don’t ascribe meaning to symbols

Formal Language, chapter 1, slide 7

8

Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages

Formal Language, chapter 1, slide 8

9

Strings

• A string is a finite sequence of zero or more
symbols

• Length of a string: |abbb| = 4
• A string over the alphabet Σ means 

a string all of whose symbols are in Σ
– The set of all strings of length 2 over the alphabet

{a,b} is {aa, ab, ba, bb}

Formal Language, chapter 1, slide 9

10

Empty String

• The empty string is written as ε
• Like "" in some programming languages
• |ε| = 0
• Don't confuse empty set and empty string:

– {} ≠ ε
– {} ≠ {ε}

Formal Language, chapter 1, slide 10

11

Symbols And Variables

• Sometimes we will use variables that stand for strings: x = abbb
• In programming languages, syntax helps distinguish symbols

from variables
– String x = "abbb";

• In formal language, we rely on context and naming conventions
to tell them apart

• We'll use the first letters, like a, b, and c, as symbols
• The last few, like x, y, and z, will be string variables

Formal Language, chapter 1, slide 11

12

Concatenation

• The concatenation of two strings x and y is the
string containing all the symbols of x in order,
followed by all the symbols of y in order

• We show concatenation just by writing the
strings next to each other

• If x = abc and y = def, then xy = abcdef
• For any x, εx = xε = x

Formal Language, chapter 1, slide 12

13

Numbers

• We use N to denote the set of natural
numbers: N = {0, 1, …}

Formal Language, chapter 1, slide 13

14

Exponents
• We use N to denote the set of natural numbers:  

N = {0, 1, …}
• Exponent n concatenates a string with itself n times

– If x = ab, then
• x0 = ε
• x1 = x = ab
• x2 = xx = abab, etc.

– We use parentheses for grouping exponentiations (assuming
that Σ does not contain the parentheses)

• (ab)7 = ababababababab

Formal Language, chapter 1, slide 14

15

Outline

• 1.1 Alphabets
• 1.2 Strings
• 1.3 Languages

Formal Language, chapter 1, slide 15

16

Languages

• A language is a set of strings over some fixed
alphabet

• Not restricted to finite sets: in fact, finite sets
are not usually interesting languages

• All our alphabets are finite, and all our strings
are finite, but most of the languages we're
interested in are infinite

Formal Language, chapter 1, slide 16

17

Kleene Star

• The Kleene closure of an alphabet Σ, written
as Σ*, is the language of all strings over Σ
– {a}* is the set of all strings of zero or more as:  

{ε, a, aa, aaa, …}
– {a,b}* is the set of all strings of zero or more

symbols, each of which is either a or b  
= {ε, a, b, aa, bb, ab, ba, aaa, …}

– x ∈ Σ* means x is a string over Σ

• Unless Σ = {}, Σ* is infinite

Formal Language, chapter 1, slide 17

18

Set Formers
• A set written with extra constraints or

conditions limiting the elements of the set
• Not the rigorous definitions we're looking for,

but a useful notation anyway:

{x ∈ {a, b}* | |x| ≤ 2} = {ε, a, b, aa, bb, ab, ba}

{xy | x ∈ {a, aa} and y ∈ {b, bb}} = {ab, abb, aab, aabb}

{x ∈ {a, b}* | x contains one a and two bs} = {abb, bab, bba}

{anbn | n ≥ 1} = {ab, aabb, aaabbb, aaaabbbb, ...}

Formal Language, chapter 1, slide 18

19

Free Variables in Set Formers

• Unless otherwise constrained, exponents in a
set former are assumed to range over all N

• Examples

{(ab)n} = {ε, ab, abab, ababab, abababab, ...}

{anbn} = {ε, ab, aabb, aaabbb, aaaabbbb, ...}

Formal Language, chapter 1, slide 19

20

The Quest

• Set formers are relatively informal
• They can be vague, ambiguous, or self-

contradictory
• A big part of our quest in the study of formal

language is to develop better tools for defining
languages

Formal Language, chapter 1, slide 20

