
1

Chapter Four: 
DFA Applications

Formal Language, chapter 4, slide 1

2

We have seen how DFAs can be used to define
formal languages. In addition to this formal

use, DFAs have practical applications. DFA-
based pieces of code lie at the heart of many

commonly used computer programs.

Formal Language, chapter 4, slide 2

3

Outline

• 4.1 DFA Applications
• 4.2 A DFA-Based Text Filter in Java
• 4.3 Table-Driven Alternatives

Formal Language, chapter 4, slide 3

4

DFA Applications

• Programming language processing
– Scanning phase: dividing source file into

"tokens" (keywords, identifiers, constants, etc.),
skipping whitespace and comments

• Command language processing
– Typed command languages often require the same

kind of treatment
• Text pattern matching

– Unix tools like awk, egrep, and sed, mail systems
like ProcMail, database systems like MySQL, and
many others

Formal Language, chapter 4, slide 4

5

More DFA Applications

• Signal processing
– Speech processing and other signal processing

systems use finite state models to transform the
incoming signal

• Controllers for finite-state systems
– Hardware and software
– A wide range of applications, from industrial

processes to video games

Formal Language, chapter 4, slide 5

6

Outline

• 4.1 DFA Applications
• 4.2 A DFA-Based Text Filter in Java
• 4.3 Table-Driven Alternatives

Formal Language, chapter 4, slide 6

7

The Mod3 DFA, Revisited

• We saw that this DFA accepts a language of
binary strings that encode numbers divisible
by 3

• We will implement it in Java
• We will need one more state, since our natural

alphabet is Unicode, not {0,1}

1 2

1

0
0

0

0

1

1

Formal Language, chapter 4, slide 7

8

The Mod3 DFA, Modified

• Here, Σ is the Unicode character set
• The DFA enters the non-accepting trap state

on any symbol other than 0 or 1

1 2

1

0 0
0

0

1
1

3

-{0,1} -{0,1}

-{0,1}

Formal Language, chapter 4, slide 8

9

/**  
 * A deterministic finite-state automaton that  
 * recognizes strings that are binary  
 * representations of integers that are divisible 
 * by 3. Leading zeros are permitted, and the 
 * empty string is taken as a representation for 0 
 * (along with "0", "00", and so on).  
 */  
public class Mod3 {  
 /*  
 * Constants q0 through q3 represent states, and 
 * a private int holds the current state code. 
 */  
 private static final int q0 = 0;  
 private static final int q1 = 1;  
 private static final int q2 = 2;  
 private static final int q3 = 3;  
 
 private int state;

Formal Language, chapter 4, slide 9

10

static private int delta(int s, char c) { 
 switch (s) {  
 case q0: switch (c) {  
 case '0': return q0;  
 case '1': return q1;  
 default: return q3;  
 }  
 case q1: switch (c) {  
 case '0': return q2;  
 case '1': return q0;  
 default: return q3;  
 }  
 case q2: switch (c) {  
 case '0': return q1;  
 case '1': return q2;  
 default: return q3;  
 }  
 default: return q3;  
 }  
}

Formal Language, chapter 4, slide 10

11

 /**  
 * Reset the current state to the start state. 
 */  
 public void reset() {  
 state = q0;  
 }  
 
 /**  
 * Make one transition on each char in the given 
 * string.  
 * @param in the String to use  
 */  
 public void process(String in) {  
 for (int i = 0; i < in.length(); i++) { 
 char c = in.charAt(i);  
 state = delta(state, c);  
 }  
 }

Formal Language, chapter 4, slide 11

12

 /**  
 * Test whether the DFA accepted the string. 
 * @return true iff the final state was accepting 
 */  
 public boolean accepted() {  
 return state==q0;  
 }  
}

Usage example:

 Mod3 m = new Mod3();  
 m.reset();  
 m.process(s);  
 if (m.accepted()) ...

Formal Language, chapter 4, slide 12

13

 import java.io.*;  
 
/**  
 * A Java application to demonstrate the Mod3 class by 
 * using it to filter the standard input stream. Those 
 * lines that are accepted by Mod3 are echoed to the 
 * standard output.  
 */  
public class Mod3Filter {  
 public static void main(String[] args)  
 throws IOException {  
 
 Mod3 m = new Mod3(); // the DFA  
 BufferedReader in = // standard input  
 new BufferedReader(new InputStreamReader(System.in)); 

Formal Language, chapter 4, slide 13

14

 // Read and echo lines until EOF.  
 
 String s = in.readLine();  
 while (s!=null) {  
 m.reset();  
 m.process(s);  
 if (m.accepted()) System.out.println(s);  
 s = in.readLine();  
 }  
 }  
}

Formal Language, chapter 4, slide 14

15

C:\>type numbers
000
001
010
011
100
101
110
111
1000
1001
1010

C:\>java Mod3Filter < numbers
000
011
110
1001

C:\>

Formal Language, chapter 4, slide 15

16

Outline

• 4.1 DFA Applications
• 4.2 A DFA-Based Text Filter in Java
• 4.3 Table-Driven Alternatives

Formal Language, chapter 4, slide 16

17

Making Delta A Table

• We might want to encode delta as a two-
dimensional array

• Avoids method invocation overhead
• Then process could look like this:

 static void process(String in) {  
 for (int i = 0; i < in.length(); i++) {  
 char c = in.charAt(i);  
 state = delta[state, c];  
 }  
 }

Formal Language, chapter 4, slide 17

18

Keeping The Array Small

• If delta[state,c] is indexed by state and
symbol, it will be big: 4 by 65536!

• And almost all entries will be 3
• Instead, we could index it by state and integer,

0 or 1
• Then we could use exception handling when

the array index is out of bounds

Formal Language, chapter 4, slide 18

19

 /*  
 * The transition function represented as an array. 
 * The next state from current state s and character c 
 * is at delta[s,c-'0'].  
 */  
 static private int[][] delta =  
 {{q0,q1},{q2,q0},{q1,q2},{q3,q3}};  
 /**  
 * Make one transition on each char in the given 
 * string.  
 * @param in the String to use  
 */  
 public void process(String in) {  
 for (int i = 0; i < in.length(); i++) {  
 char c = in.charAt(i);  
 try {  
 state = delta[state][c-'0'];  
 }  
 catch (ArrayIndexOutOfBoundsException ex) { 
 state = q3;  
 }  
 }  
 }

Formal Language, chapter 4, slide 19

20

Tradeoffs

• Function or table?
• Truncated table or full table?

– By hand, a truncated table is easier
– Automatically generated systems generally produce the full table, so

the same process can be used for different DFAs
• Table representation

– We used an int for every entry: wasteful!
– Could have used a byte, or even just two bits
– Time/space tradeoff: table compression saves space but slows

down access

Formal Language, chapter 4, slide 20

