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Chapter Five:
Nondeterministic Finite Automata
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A DFA has exactly one transition from every state on every 
symbol in the alphabet.  By relaxing this requirement we get a 

related but more flexible kind of automaton: the 
nondeterministic finite automaton or NFA.

NFAs are a bit harder to think about than DFAs, because 
they do not appear to define simple computational processes.  
They may seem at first to be unnatural, like puzzles invented 
by professors for the torment of students.  But have patience!  

NFAs and other kinds of nondeterministic automata arise 
naturally in many ways, as you will see later in this book, and 

they too have a variety of practical applications.
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Outline

• 5.1 Relaxing a Requirement
• 5.2 Spontaneous Transitions
• 5.3 Nondeterminism
• 5.4 The 5-Tuple for an NFA
• 5.5 The Language Accepted by an NFA
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Not A DFA

• Does not have exactly one transition from 
every state on every symbol:
– Two transitions from q0 on a
– No transition from q1 (on either a or b)

• Though not a DFA, this can be taken as 
defining a language, in a slightly different way
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Possible Sequences of Moves

• We'll consider all possible sequences of moves the machine might 
make for a given string

• For example, on the string aa there are three:
– From q0 to q0 to q0, rejecting
– From q0 to q0 to q1, accepting
– From q0 to q1, getting stuck on the last a

• Our convention for this new kind of machine: a string is in L(M) if 
there is at least one accepting sequence
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Nondeterministic Finite Automaton 
(NFA)

• L(M) = the set of strings that have at least one accepting sequence
• In the example above, L(M) = {xa | x ∈ {a,b}*}
• A DFA is a special case of an NFA:

– An NFA that happens to be deterministic: there is exactly one 
transition from every state on every symbol

– So there is exactly one possible sequence for every string
• NFA is not necessarily deterministic
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NFA Advantage
• An NFA for a language can be smaller and easier to construct than 

a DFA
• Strings whose next-to-last symbol is 1:

DFA:

NFA:
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Spontaneous Transitions

• An NFA can make a state transition 
spontaneously, without consuming an input 
symbol

• Shown as an arrow labeled with ε
• For example, {a}* ∪ {b}*:
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ε-Transitions To Accepting States

• An ε-transition can be made at any time
• For example, there are three sequences on the empty string

– No moves, ending in q0, rejecting
– From q0 to q1, accepting
– From q0 to q2, accepting

• Any state with an ε-transition to an accepting state ends up 
working like an accepting state too
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ε-transitions For NFA Combining

• ε-transitions are useful for combining smaller 
automata into larger ones

• This machine is combines a machine for {a}* 
and a machine for {b}*

• It uses an ε-transition at the start to achieve 
the union of the two languages
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Incorrect Union
A = {an |  n is odd}

B = {bn |  n is odd}

A ∪ B ?
No: this NFA accepts aab
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Correct Union
A = {an |  n is odd}

B = {bn |  n is odd}

A ∪ B 
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Incorrect Concatenation
A = {an |  n is odd}

B = {bn |  n is odd}

{xy |  x ∈ A and y ∈ B} ?
No: this NFA accepts abbaab
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Correct Concatenation
A = {an |  n is odd}

B = {bn |  n is odd}

{xy |  x ∈ A and y ∈ B}
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DFAs and NFAs
• DFAs and NFAs both define languages
• DFAs do it by giving a simple computational procedure for deciding 

language membership:
– Start in the start state
– Make one transition on each symbol in the string
– See if the final state is accepting

• NFAs do it without such a clear-cut procedure:
– Search all legal sequences of transitions on the input string?
– How?  In what order?
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Nondeterminism

• The essence of nondeterminism:
– For a given input there can be more than one legal sequence 

of steps
– The input is in the language if at least one of the legal 

sequences says so
• We can achieve the same result by deterministically 

searching the legal sequences, but… 
• ...this nondeterminism does not directly correspond to 

anything in physical computer systems
• In spite of that, NFAs have many practical applications
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Powerset
• If S is a set, the powerset of S is the set of all subsets of S:

P(S) = {R | R ⊆ S}

• This always includes the empty set and S itself
• For example,

P({1,2,3}) = {{}, {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}}
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The 5-Tuple

• The only change from a DFA is the transition function δ
• δ takes two inputs:

– A state from Q (the current state)
– A symbol from Σ∪{ε} (the next input, or ε for an ε-transition)

• δ produces one output:
– A subset of Q (the set of possible next states)

An NFA M is a 5-tuple M = (Q, Σ, δ, q0, F), where:
Q is the finite set of states
Σ is the alphabet (that is, a finite set of symbols)
δ ∈ (Q × (Σ∪{ε}) → P(Q)) is the transition function
q0 ∈ Q is the start state
F ⊆ Q is the set of accepting states
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Example:

• Formally, M = (Q, Σ, δ, q0, F), where
– Q = {q0,q1,q2}
– Σ = {a,b}  (we assume: it must contain at least a and b)
– F = {q2}
– δ(q0,a) = {q0,q1}, δ(q0,b) = {q0}, δ(q0,ε) = {q2}, 
δ(q1,a) = {}, δ(q1,b) = {q2}, δ(q1,ε) = {}
δ(q2,a) = {}, δ(q2,b) = {}, δ(q2,ε) = {}

• The language defined is {a,b}*
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The δ* Function

• The δ function gives 1-symbol moves
• We'll define δ* so it gives whole-string results 

(by applying zero or more δ moves)
• For DFAs, we used this recursive definition
– δ*(q,ε) = q
– δ*(q,xa) = δ(δ*(q,x),a)

• The intuition is the similar for NFAs, but the 
ε-transitions add some technical hair
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NFA IDs

• An instantaneous description (ID) is a 
description of a point in an NFA's execution

• It is a pair (q,x) where
– q ∈ Q is the current state
– x ∈ Σ* is the unread part of the input

• Initially, an NFA processing a string x has the 
ID (q0,x)

• An accepting sequence of moves ends in an 
ID (f,ε) for some accepting state f ∈ F
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The One-Move Relation On IDs

• We write 

if I is an ID and J is an ID that could follow from 
I after one move of the NFA

• That is, for any string x ∈ Σ* and any ω ∈ Σ or 
ω = ε, 
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The Zero-Or-More-Move Relation

• We write 

if there is a sequence of zero or more moves 
that starts with I and ends with J:

• Because it allows zero moves, it is a reflexive 
relation: for all IDs I, 
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The δ* Function

• Now we can define the δ* function for NFAs:

• Intuitively, δ*(q,x) is the set of all states the 
NFA might be in after starting in state q and 
reading x

• Our definition allows ε-transitions, including 
those made before the first symbol of x is read, 
and those made after the last
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M Accepts x

• Now δ*(q,x) is the set of states M may end in, 
starting from state q and reading all of string x

• So δ*(q0,x) tells us whether M accepts x:

A string x ∈ Σ* is accepted by an NFA M = (Q, Σ, δ, q0, F) if 
and only if δ*(q0, x) contains at least one element of F.
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For any NFA M = (Q, Σ, δ, q0, F), L(M) denotes 
the language accepted by M, which is 

L(M) = {x ∈ Σ* |  δ*(q0, x) ∩ F ≠ {}}.

The Language An NFA Defines
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