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Chapter Fifteen: 
Stack Machine Applications
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The parse tree (or a simplified version called the abstract syntax tree) 
is one of the central data structures of almost every compiler or other 
programming language system.  To parse a program is to find a parse 
tree for it.  Every time you compile a program, the compiler must first 

parse it.  Parsing algorithms are fundamentally related to stack 
machines, as this chapter illustrates.
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Outline

• 15.1 Top-Down Parsing 
• 15.2 Recursive Descent Parsing 
• 15.3 Bottom-Up Parsing 
• 15.4 PDAs, DPDAs, and DCFLs
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Parsing

• To parse is to find a parse tree in a given 
grammar for a given string 

• An important early task for every compiler 
• To compile a program, first find a parse tree 

– That shows the program is syntactically legal 
– And shows the program's structure, which begins 

to tell us something about its semantics 
• Good parsing algorithms are critical 
• Given a grammar, build a parser…
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CFG to Stack Machine, Review

• Two types of moves: 
1. A move for each production X → y 
2.  A move for each terminal a ∈ Σ 

• The first type lets it do any derivation 
• The second matches the derived string and the input 
• Their execution is interlaced:  

– type 1 when the top symbol is nonterminal 
– type 2 when the top symbol is terminal

read pop push 
 X  y  

a a  
 

Formal Language, chapter 15, slide 5



6

Top Down

• The stack machine so constructed accepts by 
showing it can find a derivation in the CFG 

• If each type-1 move linked the children to the 
parent, it would construct a parse tree 

• The construction would be top-down (that is, 
starting at root S) 

• One problem: the stack machine in question is 
highly nondeterministic 

• To implement, this must be removed
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Almost Deterministic

• Not deterministic, but move is easy to choose 
• For example, abbcbba has three possible first moves, but only 

one makes sense:

S → aSa | bSb | c
 read pop push 
1 .   S  aSa  
2 .   S  bSb  
3 .   S  c  
4 .  a  a   
5 .  b  b   
6 .  c  c   

 

(abbcbba, S) ↦1 (abbcbba, aSa) ↦ …  
(abbcbba, S) ↦2 (abbcbba, bSb) ↦ …  
(abbcbba, S) ↦3 (abbcbba, c) ↦ …
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Lookahead

• To decide among the first three moves: 
– Use move 1 when the top is S, next input a 
– Use move 2 when the top is S, next input b 
– Use move 3 when the top is S, next input c 

• Choose next move by peeking at next input symbol 
• One symbol of lookahead lets us parse this 

deterministically

 read pop push 
1 .   S  aSa  
2 .   S  bSb  
3 .   S  c  
4 .  a  a   
5 .  b  b   
6 .  c  c   

 

S → aSa | bSb | c
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Lookahead Table

• Those rules can be expressed as a two-dimensional lookahead 
table 

• table[A][c] tells what production to use when the top of stack is A 
and the next input symbol is c 

• Only for nonterminals A; when top of stack is terminal, we pop, 
match, and advance to next input 

• The final column, table[A][$], tells which production to use when 
the top of stack is A and all input has been read 

• With a table like that, implementation is easy…

 a  b  c  $  
S  S → aS a  S → bS b  S  →  c   
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1. void predictiveParse(table, S) {  
2.   initialize a stack containing just S  
3.   while (the stack is not empty) {  
4.     A = the top symbol on stack;  
5.     c = the current symbol in input (or $ at the end)  
6.     if (A is a terminal symbol) {  
7.       if (A != c) the parse fails;  
8.       pop A and advance input to the next symbol;  
9.     }  
10.     else {  
11.       if table[A][c] is empty the parse fails;  
12.       pop A and push the right-hand side of table[A][c];  
13.     }  
14.   }  
15.   if input is not finished the parse fails  
16. }
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The Catch

• To parse this way requires a parse table 
• That is, the choice of productions to use at 

any point must be uniquely determined by the 
nonterminal and one symbol of lookahead 

• Such tables can be constructed for some 
grammars, but not all
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LL(1) Parsing

• A popular family of top-down parsing 
techniques 
– Left-to-right scan of the input 
– Following the order of a leftmost derivation 
– Using 1 symbol of lookahead 

• A variety of algorithms, including the table-
based top-down parser we just saw
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LL(1) Grammars And Languages

• LL(1) grammars are those for which LL(1) 
parsing is possible 

• LL(1) languages are those with LL(1) 
grammars 

• There is an algorithm for constructing the 
LL(1) parse table for a given LL(1) grammar 

• LL(1) grammars can be constructed for most 
programming languages, but they are not 
always pretty…
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Not LL(1)

• This grammar for a little language of 
expressions is not LL(1) 

• For one thing, it is ambiguous 
• No ambiguous grammar is LL(1)

S → (S) | S+S | S*S | a | b | c
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Still Not LL(1)

• This is an unambiguous grammar for the 
same language 

• But it is still not LL(1) 
• It has left-recursive productions like S → S+R 

• No left-recursive grammar is LL(1)

S → S+R | R  
R → R*X | X 
X → (S) | a | b | c
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LL(1), But Ugly

• Same language, now with an LL(1) grammar 
• Parse table is not obvious: 

– When would you use S → AR ? 
– When would you use B → ε ?

S → AR  
R → +AR | ε 
A → XB 
B → *XB | ε 
X → (S) | a | b | c

 a  b  c  +  *  (  )  $  
S  S  →  AR  S  →  AR  S  →  AR    S  →  AR    
R     R  →  +AR    R →  R →  
A  A  →  XB  A  →  XB  A  →  XB    A  →  XB    
B     B →  B  →  *XB  B →  B →  
X  X  →  a  X  →  b  X  →  c    X → (S)    
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Outline

• 15.1 Top-Down Parsing 
• 15.2 Recursive Descent Parsing 
• 15.3 Bottom-Up Parsing 
• 15.4 PDAs, DPDAs, and DCFLs

Formal Language, chapter 15, slide 17



18

Recursive Descent

• A different implementation of LL(1) parsing 
• Same idea as a table-driven predictive parser 
• But implemented without an explicit stack 
• Instead, a collection of recursive functions: 

one for parsing each nonterminal in the 
grammar
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S → aSa | bSb | c

• Still chooses move using 1 lookahead symbol 
• But parse table is incorporated into the code

void parse_S() {  
  c = the current symbol in input (or $ at the end)  
  if (c=='a') { // production S → aSa 
    match('a'); parse_S(); match('a'); 
  }  
  else if (c=='b') { // production S → bSb 
    match('b'); parse_S(); match('b'); 
  }  
  else if (c=='c') { // production S → c 
    match('c');  
  }  
  else the parse fails;  
} 
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Recursive Descent Structure

• A function for each nonterminal, with a case for each 
production: 

• For each RHS, a call to match each terminal, and a 
recursive call for each nonterminal:

if (c=='a') { // production S → aSa 
    match('a'); parse_S(); match('a'); 
}

void match(x) {  
  c = the current symbol in input  
  if (c!=x) the parse fails;  
  advance input to the next symbol;  
} 
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Example:

void parse_S() {  
  c = the current symbol in input (or $ at the end)  
  if (c=='a' || c=='b' ||  
      c=='c' || c=='(') { // production S → AR 
    parse_A(); parse_R();  
  }  
  else the parse fails;  
}

 a  b  c  +  *  (  )  $  
S  S  →  AR  S  →  AR  S  →  AR    S  →  AR    
R     R  →  +AR    R →  R →  
A  A  →  XB  A  →  XB  A  →  XB    A  →  XB    
B     B →  B  →  *XB  B →  B →  
X  X  →  a  X  →  b  X  →  c    X → (S)    
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Example:

void parse_R() {  
  c = the current symbol in input (or $ at the end)  
  if (c=='+') // production R → +AR 
    match('+'); parse_A(); parse_R();  
  }  
  else if (c==')' || c=='$') { // production R → ε 
  }  
  else the parse fails;  
}

 a  b  c  +  *  (  )  $  
S  S  →  AR  S  →  AR  S  →  AR    S  →  AR    
R     R  →  +AR    R →  R →  
A  A  →  XB  A  →  XB  A  →  XB    A  →  XB    
B     B →  B  →  *XB  B →  B →  
X  X  →  a  X  →  b  X  →  c    X → (S)    
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Where's The Stack?

• Recursive descent vs. our previous table-driven top-
down parser: 
– Both are top-down predictive methods 
– Both use one symbol of lookahead 
– Both require an LL(1) grammar 
– Table-driven method uses an explicit parse table; recursive 

descent uses a separate function for each nonterminal 
– Table-driven method uses an explicit stack; recursive descent 

uses the call stack 
• A recursive-descent parser is a stack machine in 

disguise
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Outline

• 15.1 Top-Down Parsing 
• 15.2 Recursive Descent Parsing 
• 15.3 Bottom-Up Parsing 
• 15.4 PDAs, DPDAs, and DCFLs
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Shift-Reduce Parsing

• It is possible to parse bottom up (starting at the leaves 
and doing the root last) 

• An important bottom-up technique, shift-reduce 
parsing, has two kinds of moves: 
– (shift) Push the current input symbol onto the stack and 

  advance to the next input symbol 
– (reduce) On top of the stack is the string x of some  

  production A → x; pop it and push the A 
• The shift move is the reverse of what our LL(1) parser 

did; it popped terminal symbols off the stack 
• The reduce move is also the reverse of what our LL(1) 

parser did; it popped A and pushed x
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S → aSa | bSb | c

• A shift-reduce parse for abbcbba 
• Root is built in the last move: that's bottom-up 
• Shift-reduce is central to many parsing techniques…

Input  Stack  Next move 
abbcbba$   shif t  
abbcbba$  a  shif t  
abbcbba$  b a  shif t  
abbcbba$  b b a  shif t  
abbcbba$  cb b a  reduce by S  →  c 
aaacbbb$  Sbba  shif t  
abbcbba$  bSbba reduce by S → bSb  
abbcbba$  S b a  shif t  
abbcbba$  bSba  reduce by S → bSb  
abbcbba$  S a  shift  
abbcbba$ aSa reduce by S → aSa  
abbcbba$ S   
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LR(1) Parsing

• A popular family of shift-reduce parsing techniques 
– Left-to-right scan of the input 
– Following the order of a rightmost derivation in reverse 
– Using 1 symbol of lookahead 

• There are many LR(1) parsing algorithms 
• Generally trickier than LL(1) parsing: 

– Choice of shift or reduce move depends on the top-of stack 
string, not just the top-of-stack symbol 

– One cool trick uses stacked DFA state numbers to avoid 
expensive string comparisons in the stack
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LR(1) Grammars And Languages

• LR(1) grammars are those for which LR(1) 
parsing is possible 
– Includes all of LL(1), plus many more 
– Making a grammar LR(1) usually does not require 

as many contortions as making it LL(1) 
– This is the big advantage of LR(1) 

• LR(1) languages are those with LR(1) 
grammars 
– Most programming languages are LR(1)
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Parser Generators

• LR parsers are usually too complicated to be 
written by hand 

• They are usually generated automatically, by 
tools like yacc: 
– Input is a CFG for the language 
– Output is source code for an LR parser for the 

language
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Beyond LR(1)

• LR(1) techniques are efficient 
• Like LL(1), linear in the program size 
• Beyond LR(1) are many other parsing algorithms 
• Cocke-Kasami-Younger (CKY), for example: 

– Deterministic 
– Works on all CFGs 
– Much simpler than LR(1) techniques 
– But cubic in the program size 
– Much to slow for compilers and other programming-language 

tools

Formal Language, chapter 15, slide 30



31

Outline

• 15.1 Top-Down Parsing 
• 15.2 Recursive Descent Parsing 
• 15.3 Bottom-Up Parsing 
• 15.4 PDAs, DPDAs, and DCFLs
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PDA

• A widely studied stack-based automaton: the 
pushdown automaton (PDA) 

• A PDA is like an NFA plus a stack machine: 
– States and state transitions, like an NFA 
– Each transition can also manipulate an unbounded 

stack, like a stack machine

Formal Language, chapter 15, slide 32



33

 
q r a,Z/x 

PDA Transitions

• Like an NFA transition: in state q, with a as the next 
input, read past it and go to state r 

• Plus a stack machine transition: reading an a, with Z 
as the top of the stack, pop the Z and push an x 

• All together: 
– In state q, with a as the next input, and with Z on top of the 

stack, read past the a, pop the Z, push x, and go to state r
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Variations

• Many minor PDA variations have been 
studied: 
– Accept by empty stack (like stack machine), or by 

final state (like NFA), or require both to accept 
– Start with a special symbol on stack, or with empty 

stack 
– Start with special end-of-string symbol on the input, 

or not 
• DFAs and NFAs are comparatively 

standardized
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Why Study PDAs

• PDAs are more complicated than stack machines  
• The class of languages ends up the same: the CFLs 
• So why bother with PDAs? 
• Several reasons: 

– They make some proofs simpler: to prove the CFLs closed 
for intersection with regular languages, for instance, you can 
do a product construction combining a PDA and an NFA 

– They make a good story: an NFA is bitten by a radioactive 
spider and develops super powers… 

– They have an interesting deterministic variety: the DPDAs...
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Deterministic Restriction

• Finite-state automata 
– NFA has zero or more possible moves from each 

configuration 
– DFA is restricted to exactly one 
– DFA defines a simple computational procedure for deciding 

language membership 
• Pushdown automata 

– PDA, like a stack machine, has zero or more possible moves 
from each configuration 

– DPDA is restricted to no more than one 
– DPDA gives a simple computational procedure for deciding 

language membership
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Important Difference

• The deterministic restriction does not seriously 
weaken NFAs: DFAs can still define exactly 
the regular languages 

• It does seriously weaken PDAs: DPDAs are 
strictly weaker than PDAs 

• The class of languages defined by DPDAs is a 
proper subset of the CFLs: the DCFLs 

• A deterministic context-free language (DCFL) 
is a language that is L(M) for some DPDA M
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• DCFLs includes all the regular languages 
• But not all CFLs: for instance, those xxR languages 
• Intuitively, that makes sense: no way for a stack machine to 

decide where the middle of the string is 
•  On the other hand, {xcxR |  x ∈ {a,b}*}  is a DCFL

 

regular 
languages 

DCFLs 

L(a*b*) 

{anbn} CFLs 

{xxR | x ∈ {a,b}*} 
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Closure Properties

• DCFLs do not have the same closure properties as 
CFLs: 
– Not closed for union: the union of two DCFLs is not 

necessarily a DCFL (though it is a CFL) 
– Closed for complement: the complement of a DCFL is 

another DCFL 
• Can be used to prove that a given CFL is not a DCFL 
• Such proofs are difficult; there seems to be no 

equivalent of the pumping lemma for DCFLs
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There It Is Again

• Language classes seem more important when 
they keep turning up: 
– Regular languages turn up in DFAs, NFAs, regular 

expressions, right-linear grammars 
– CFLs turn up in CFGs, stack machines, PDAs 

• DCFLs also receive this kind of validation: 
– LR(1) languages = DCFLs
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