
1

Chapter Fifteen: 
Stack Machine Applications

Formal Language, chapter 15, slide 1

2

The parse tree (or a simplified version called the abstract syntax tree)
is one of the central data structures of almost every compiler or other
programming language system. To parse a program is to find a parse
tree for it. Every time you compile a program, the compiler must first

parse it. Parsing algorithms are fundamentally related to stack
machines, as this chapter illustrates.

Formal Language, chapter 15, slide 2

3

Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs

Formal Language, chapter 15, slide 3

4

Parsing

• To parse is to find a parse tree in a given
grammar for a given string

• An important early task for every compiler
• To compile a program, first find a parse tree

– That shows the program is syntactically legal
– And shows the program's structure, which begins

to tell us something about its semantics
• Good parsing algorithms are critical
• Given a grammar, build a parser…

Formal Language, chapter 15, slide 4

5

CFG to Stack Machine, Review

• Two types of moves:
1. A move for each production X → y
2. A move for each terminal a ∈ Σ

• The first type lets it do any derivation
• The second matches the derived string and the input
• Their execution is interlaced:

– type 1 when the top symbol is nonterminal
– type 2 when the top symbol is terminal

read pop push
 X y

a a

Formal Language, chapter 15, slide 5

6

Top Down

• The stack machine so constructed accepts by
showing it can find a derivation in the CFG

• If each type-1 move linked the children to the
parent, it would construct a parse tree

• The construction would be top-down (that is,
starting at root S)

• One problem: the stack machine in question is
highly nondeterministic

• To implement, this must be removed

Formal Language, chapter 15, slide 6

7

Almost Deterministic

• Not deterministic, but move is easy to choose
• For example, abbcbba has three possible first moves, but only

one makes sense:

S → aSa | bSb | c
 read pop push
1 . S aSa
2 . S bSb
3 . S c
4 . a a
5 . b b
6 . c c

(abbcbba, S) ↦1 (abbcbba, aSa) ↦ …  
(abbcbba, S) ↦2 (abbcbba, bSb) ↦ …  
(abbcbba, S) ↦3 (abbcbba, c) ↦ …

Formal Language, chapter 15, slide 7

8

Lookahead

• To decide among the first three moves:
– Use move 1 when the top is S, next input a
– Use move 2 when the top is S, next input b
– Use move 3 when the top is S, next input c

• Choose next move by peeking at next input symbol
• One symbol of lookahead lets us parse this

deterministically

 read pop push
1 . S aSa
2 . S bSb
3 . S c
4 . a a
5 . b b
6 . c c

S → aSa | bSb | c

Formal Language, chapter 15, slide 8

9

Lookahead Table

• Those rules can be expressed as a two-dimensional lookahead
table

• table[A][c] tells what production to use when the top of stack is A
and the next input symbol is c

• Only for nonterminals A; when top of stack is terminal, we pop,
match, and advance to next input

• The final column, table[A][$], tells which production to use when
the top of stack is A and all input has been read

• With a table like that, implementation is easy…

 a b c $
S S → aS a S → bS b S → c

Formal Language, chapter 15, slide 9

10

1. void predictiveParse(table, S) {  
2. initialize a stack containing just S  
3. while (the stack is not empty) {  
4. A = the top symbol on stack;  
5. c = the current symbol in input (or $ at the end)  
6. if (A is a terminal symbol) {  
7. if (A != c) the parse fails;  
8. pop A and advance input to the next symbol;  
9. }  
10. else {  
11. if table[A][c] is empty the parse fails;  
12. pop A and push the right-hand side of table[A][c];  
13. }  
14. }  
15. if input is not finished the parse fails  
16. }

Formal Language, chapter 15, slide 10

11

The Catch

• To parse this way requires a parse table
• That is, the choice of productions to use at

any point must be uniquely determined by the
nonterminal and one symbol of lookahead

• Such tables can be constructed for some
grammars, but not all

Formal Language, chapter 15, slide 11

12

LL(1) Parsing

• A popular family of top-down parsing
techniques
– Left-to-right scan of the input
– Following the order of a leftmost derivation
– Using 1 symbol of lookahead

• A variety of algorithms, including the table-
based top-down parser we just saw

Formal Language, chapter 15, slide 12

13

LL(1) Grammars And Languages

• LL(1) grammars are those for which LL(1)
parsing is possible

• LL(1) languages are those with LL(1)
grammars

• There is an algorithm for constructing the
LL(1) parse table for a given LL(1) grammar

• LL(1) grammars can be constructed for most
programming languages, but they are not
always pretty…

Formal Language, chapter 15, slide 13

14

Not LL(1)

• This grammar for a little language of
expressions is not LL(1)

• For one thing, it is ambiguous
• No ambiguous grammar is LL(1)

S → (S) | S+S | S*S | a | b | c

Formal Language, chapter 15, slide 14

15

Still Not LL(1)

• This is an unambiguous grammar for the
same language

• But it is still not LL(1)
• It has left-recursive productions like S → S+R

• No left-recursive grammar is LL(1)

S → S+R | R  
R → R*X | X 
X → (S) | a | b | c

Formal Language, chapter 15, slide 15

16

LL(1), But Ugly

• Same language, now with an LL(1) grammar
• Parse table is not obvious:

– When would you use S → AR ?
– When would you use B → ε ?

S → AR  
R → +AR | ε 
A → XB 
B → *XB | ε 
X → (S) | a | b | c

 a b c + * () $
S S → AR S → AR S → AR S → AR
R R → +AR R → R →
A A → XB A → XB A → XB A → XB
B B → B → *XB B → B →
X X → a X → b X → c X → (S)

Formal Language, chapter 15, slide 16

17

Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs

Formal Language, chapter 15, slide 17

18

Recursive Descent

• A different implementation of LL(1) parsing
• Same idea as a table-driven predictive parser
• But implemented without an explicit stack
• Instead, a collection of recursive functions:

one for parsing each nonterminal in the
grammar

Formal Language, chapter 15, slide 18

19

S → aSa | bSb | c

• Still chooses move using 1 lookahead symbol
• But parse table is incorporated into the code

void parse_S() {  
 c = the current symbol in input (or $ at the end)  
 if (c=='a') { // production S → aSa 
 match('a'); parse_S(); match('a'); 
 }  
 else if (c=='b') { // production S → bSb 
 match('b'); parse_S(); match('b'); 
 }  
 else if (c=='c') { // production S → c 
 match('c');  
 }  
 else the parse fails;  
}

Formal Language, chapter 15, slide 19

20

Recursive Descent Structure

• A function for each nonterminal, with a case for each
production:

• For each RHS, a call to match each terminal, and a
recursive call for each nonterminal:

if (c=='a') { // production S → aSa 
 match('a'); parse_S(); match('a'); 
}

void match(x) {  
 c = the current symbol in input  
 if (c!=x) the parse fails;  
 advance input to the next symbol;  
}

Formal Language, chapter 15, slide 20

21

Example:

void parse_S() {  
 c = the current symbol in input (or $ at the end)  
 if (c=='a' || c=='b' ||  
 c=='c' || c=='(') { // production S → AR 
 parse_A(); parse_R();  
 }  
 else the parse fails;  
}

 a b c + * () $
S S → AR S → AR S → AR S → AR
R R → +AR R → R →
A A → XB A → XB A → XB A → XB
B B → B → *XB B → B →
X X → a X → b X → c X → (S)

Formal Language, chapter 15, slide 21

22

Example:

void parse_R() {  
 c = the current symbol in input (or $ at the end)  
 if (c=='+') // production R → +AR 
 match('+'); parse_A(); parse_R();  
 }  
 else if (c==')' || c=='$') { // production R → ε 
 }  
 else the parse fails;  
}

 a b c + * () $
S S → AR S → AR S → AR S → AR
R R → +AR R → R →
A A → XB A → XB A → XB A → XB
B B → B → *XB B → B →
X X → a X → b X → c X → (S)

Formal Language, chapter 15, slide 22

23

Where's The Stack?

• Recursive descent vs. our previous table-driven top-
down parser:
– Both are top-down predictive methods
– Both use one symbol of lookahead
– Both require an LL(1) grammar
– Table-driven method uses an explicit parse table; recursive

descent uses a separate function for each nonterminal
– Table-driven method uses an explicit stack; recursive descent

uses the call stack
• A recursive-descent parser is a stack machine in

disguise

Formal Language, chapter 15, slide 23

24

Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs

Formal Language, chapter 15, slide 24

25

Shift-Reduce Parsing

• It is possible to parse bottom up (starting at the leaves
and doing the root last)

• An important bottom-up technique, shift-reduce
parsing, has two kinds of moves:
– (shift) Push the current input symbol onto the stack and

 advance to the next input symbol
– (reduce) On top of the stack is the string x of some

 production A → x; pop it and push the A
• The shift move is the reverse of what our LL(1) parser

did; it popped terminal symbols off the stack
• The reduce move is also the reverse of what our LL(1)

parser did; it popped A and pushed x

Formal Language, chapter 15, slide 25

26

S → aSa | bSb | c

• A shift-reduce parse for abbcbba
• Root is built in the last move: that's bottom-up
• Shift-reduce is central to many parsing techniques…

Input Stack Next move
abbcbba$ shif t
abbcbba$ a shif t
abbcbba$ b a shif t
abbcbba$ b b a shif t
abbcbba$ cb b a reduce by S → c
aaacbbb$ Sbba shif t
abbcbba$ bSbba reduce by S → bSb
abbcbba$ S b a shif t
abbcbba$ bSba reduce by S → bSb
abbcbba$ S a shift
abbcbba$ aSa reduce by S → aSa
abbcbba$ S

Formal Language, chapter 15, slide 26

27

LR(1) Parsing

• A popular family of shift-reduce parsing techniques
– Left-to-right scan of the input
– Following the order of a rightmost derivation in reverse
– Using 1 symbol of lookahead

• There are many LR(1) parsing algorithms
• Generally trickier than LL(1) parsing:

– Choice of shift or reduce move depends on the top-of stack
string, not just the top-of-stack symbol

– One cool trick uses stacked DFA state numbers to avoid
expensive string comparisons in the stack

Formal Language, chapter 15, slide 27

28

LR(1) Grammars And Languages

• LR(1) grammars are those for which LR(1)
parsing is possible
– Includes all of LL(1), plus many more
– Making a grammar LR(1) usually does not require

as many contortions as making it LL(1)
– This is the big advantage of LR(1)

• LR(1) languages are those with LR(1)
grammars
– Most programming languages are LR(1)

Formal Language, chapter 15, slide 28

29

Parser Generators

• LR parsers are usually too complicated to be
written by hand

• They are usually generated automatically, by
tools like yacc:
– Input is a CFG for the language
– Output is source code for an LR parser for the

language

Formal Language, chapter 15, slide 29

30

Beyond LR(1)

• LR(1) techniques are efficient
• Like LL(1), linear in the program size
• Beyond LR(1) are many other parsing algorithms
• Cocke-Kasami-Younger (CKY), for example:

– Deterministic
– Works on all CFGs
– Much simpler than LR(1) techniques
– But cubic in the program size
– Much to slow for compilers and other programming-language

tools

Formal Language, chapter 15, slide 30

31

Outline

• 15.1 Top-Down Parsing
• 15.2 Recursive Descent Parsing
• 15.3 Bottom-Up Parsing
• 15.4 PDAs, DPDAs, and DCFLs

Formal Language, chapter 15, slide 31

32

PDA

• A widely studied stack-based automaton: the
pushdown automaton (PDA)

• A PDA is like an NFA plus a stack machine:
– States and state transitions, like an NFA
– Each transition can also manipulate an unbounded

stack, like a stack machine

Formal Language, chapter 15, slide 32

33

q r a,Z/x

PDA Transitions

• Like an NFA transition: in state q, with a as the next
input, read past it and go to state r

• Plus a stack machine transition: reading an a, with Z
as the top of the stack, pop the Z and push an x

• All together:
– In state q, with a as the next input, and with Z on top of the

stack, read past the a, pop the Z, push x, and go to state r

Formal Language, chapter 15, slide 33

34

Variations

• Many minor PDA variations have been
studied:
– Accept by empty stack (like stack machine), or by

final state (like NFA), or require both to accept
– Start with a special symbol on stack, or with empty

stack
– Start with special end-of-string symbol on the input,

or not
• DFAs and NFAs are comparatively

standardized

Formal Language, chapter 15, slide 34

35

Why Study PDAs

• PDAs are more complicated than stack machines
• The class of languages ends up the same: the CFLs
• So why bother with PDAs?
• Several reasons:

– They make some proofs simpler: to prove the CFLs closed
for intersection with regular languages, for instance, you can
do a product construction combining a PDA and an NFA

– They make a good story: an NFA is bitten by a radioactive
spider and develops super powers…

– They have an interesting deterministic variety: the DPDAs...

Formal Language, chapter 15, slide 35

36

Deterministic Restriction

• Finite-state automata
– NFA has zero or more possible moves from each

configuration
– DFA is restricted to exactly one
– DFA defines a simple computational procedure for deciding

language membership
• Pushdown automata

– PDA, like a stack machine, has zero or more possible moves
from each configuration

– DPDA is restricted to no more than one
– DPDA gives a simple computational procedure for deciding

language membership

Formal Language, chapter 15, slide 36

37

Important Difference

• The deterministic restriction does not seriously
weaken NFAs: DFAs can still define exactly
the regular languages

• It does seriously weaken PDAs: DPDAs are
strictly weaker than PDAs

• The class of languages defined by DPDAs is a
proper subset of the CFLs: the DCFLs

• A deterministic context-free language (DCFL)
is a language that is L(M) for some DPDA M

Formal Language, chapter 15, slide 37

38

• DCFLs includes all the regular languages
• But not all CFLs: for instance, those xxR languages
• Intuitively, that makes sense: no way for a stack machine to

decide where the middle of the string is
• On the other hand, {xcxR | x ∈ {a,b}*} is a DCFL

regular
languages

DCFLs

L(a*b*)

{anbn} CFLs

{xxR | x ∈ {a,b}*}

Formal Language, chapter 15, slide 38

39

Closure Properties

• DCFLs do not have the same closure properties as
CFLs:
– Not closed for union: the union of two DCFLs is not

necessarily a DCFL (though it is a CFL)
– Closed for complement: the complement of a DCFL is

another DCFL
• Can be used to prove that a given CFL is not a DCFL
• Such proofs are difficult; there seems to be no

equivalent of the pumping lemma for DCFLs

Formal Language, chapter 15, slide 39

40

There It Is Again

• Language classes seem more important when
they keep turning up:
– Regular languages turn up in DFAs, NFAs, regular

expressions, right-linear grammars
– CFLs turn up in CFGs, stack machines, PDAs

• DCFLs also receive this kind of validation:
– LR(1) languages = DCFLs

Formal Language, chapter 15, slide 40

