Solution 1: Our first solution is based upon the “merge two ordered lists” algorithm.

\[
x := \text{in1.get()}; y := \text{in2.get();}
\]

// loop invariant:

// \(x \geq \text{Max(yPast)} \land y > \text{Max(xPast)} \land \text{outPast + (x, cntr) = f(xPast + x, yPast)} \)

do while (\(x \neq +\infty \lor y \neq +\infty \))

if (\(x \leq y \)) then

\[\text{out.put(x); out.put(cntr); cntr := 0; x := \text{in1.get();}}\]

else if (\(x = y \)) then

\[\text{cntr := cntr + 1; y := \text{in2.get();}}\]

else // \(x > y \)

\[y := \text{in2.get();}\]

fi

od

// postcondition: \(x = +\infty \land y = +\infty \land \text{outPast = f(xPast,yPast)} \)

Recall that a loop invariant is a boolean function (i.e., a predicate) of the program variables having the property that it is true immediately before and immediately after each iteration of the loop. To be useful in making a convincing argument of correctness, a loop invariant must have the further property that it, conjuncted with the negation of the loop guard, guarantees the postcondition of the loop.

Imagine that we were to take a snapshot of the algorithm’s state at some point during its execution. We use \(\text{xPast} \) (respectively, \(\text{yPast} \)) to refer to the sequence of values assumed by \(x \) (respectively, \(y \)) prior to assuming its current value. (That is, \(\text{xPast} \) (respectively, \(\text{yPast} \)) is the sequence of values returned by all calls to \(\text{in1.get()} \) (respectively, \(\text{in2.get()} \)) prior to the most recent call. Similarly, \(\text{outPast} \) is the sequence of ordered pairs produced by calls to \(\text{out.put()} \) so far. Let \(f \) be the function that, given two sequences as described in the problem description, produces the sequence of ordered pairs that should be the program’s output.

The + symbol denotes the concatenation operator on sequences. \(\text{Max} \), when applied to a sequence, yields the maximum value in that sequence, or \(-\infty \) if the sequence is empty.
Solution 2: Our second solution is an adaptation of the Balanced Line Algorithm.

\[
x := \text{in1.get(); } y := \text{in2.get();}
// loop invariant:
// \quad x \geq \text{Max}(y_{\text{Past}}) \land y > \text{Max}(x_{\text{Past}}) \land \text{outPast} = f(x_{\text{Past}}, y_{\text{Past}})
\]
\[
\quad \text{do while } (x \neq +\infty \lor y \neq +\infty)
\]
\[
\quad \quad \text{lesser} := \text{Min}(x, y);
\quad \text{cntr} := 0;
// loop invariant:
// \quad ((x = \text{lesser} \implies \text{outPast} + (x, \text{cntr}) = f(x_{\text{Past}} + x, y_{\text{Past}})) \land
// \quad ((x \neq \text{lesser} \implies \text{outPast} = f(x_{\text{Past}}, y_{\text{Past}}))
\]
\[
\quad \quad \text{do while } (y = \text{lesser})
\quad \quad \quad \text{cntr} := \text{cntr} + 1;
\quad \quad \quad y := \text{in2.get();}
\quad \text{od}
\]
\[
\quad \text{if } (x = \text{lesser}) \text{ then}
\quad \quad \text{out.put(x); out.put(cntr);}
\quad \text{fi}
\]
\[
\quad x := \text{in1.get();}
\text{od}
// postcondition: \quad x = +\infty \land y = +\infty \land \text{outPast} = f(x_{\text{Past}}, y_{\text{Past}})
\]

We can simplify this by observing that there is no point in counting occurrences of the current value of \(y \) if that value is smaller than \(x \)'s current value. This leads to ...

Solution 3:

\[
x := \text{in1.get(); } y := \text{in2.get();}
// loop invariant:
// \quad x \geq \text{Max}(y_{\text{Past}}) \land y > \text{Max}(x_{\text{Past}}) \land \text{outPast} = f(x_{\text{Past}}, y_{\text{Past}})
\]
\[
\quad \text{do while } (x \neq +\infty \lor y \neq +\infty)
\]
\[
\quad \quad \quad \text{do while } (x > y)
\quad \quad \quad \quad y := \text{in2.get();}
\quad \text{od}
\]
\[
\quad \text{cntr} := 0;
// loop invariant:
// \quad x \leq y \land x \geq \text{Max}(y_{\text{Past}}) \land y > \text{Max}(x_{\text{Past}}) \land \text{out} + (x, \text{cntr}) = f(x_{\text{Past}} + x, y_{\text{Past}})
\]
\[
\quad \quad \text{do while } (x = y)
\quad \quad \quad \text{cntr} := \text{cntr} + 1; y := \text{in2.get();}
\quad \text{od}
\]
\[
\quad \text{out.put(x); out.put(cntr);}
\quad x := \text{in1.get();}
\text{od}
// postcondition: \quad x = +\infty \land y = +\infty \land \text{outPast} = f(x_{\text{Past}}, y_{\text{Past}})