THEOREMS FROM GRIES AND SCHNEIDER'S LADM

J. STANLEY WARFORD

ABSTRACT. This is a collection of the axioms and theorems in Gries and Schneider's book *A Logical Approach to Discrete Math* (LADM), Springer-Verlag, 1993. The numbering is consistent with that text. Additional theorems not included or numbered in LADM are indicated by a three-part number. This document serves as a reference for homework exercises and taking exams.

TABLE OF PRECEDENCES

```
(a) [x := e] (textual substitution) (highest precedence)

(b) . (function application)

(c) unary prefix operators: + - \neg \# \sim \mathcal{P}

(d) **

(e) · / ÷ mod gcd

(f) + - \cup \cap × \circ •

(g) ↓ ↑

(h) #

(i) \triangleleft \triangleright ^

(j) = < > \in \subseteq \supseteq | (conjunctional, see page 29)

(k) \vee \wedge

(l) \Rightarrow \Leftarrow

(m) \equiv
```

All nonassociative binary infix operators associate from left to right except **, \triangleleft , and \Rightarrow , which associate from right to left.

Definition of /: The operators on lines (j), (l), and (m) may have a slash / through them to denote negation—e.g. $x \notin T$ is an abbreviation for $\neg (x \in T)$.

SOME BASIC TYPES

Name	Symbol	Type (set of values)
integer	\mathbb{Z}	integers: $\dots, -3, -2, -1, 0, 1, 2, 3, \dots$
nat	\mathbb{N}	natural numbers: $0, 1, 2, \dots$
positive	\mathbb{Z}^+	positive integers: $1, 2, 3, \ldots$
negative	\mathbb{Z}^-	negative integers: $-1, -2, -3, \dots$
rational	\mathbb{Q}	rational numbers: i/j for i, j integers, $j \neq 0$
reals	\mathbb{R}	real numbers
$positive\ reals$	\mathbb{R}^+	positive real numbers
bool	\mathbb{B}	booleans: $true, false$

Date: October 13, 2015.

THEOREMS OF THE PROPOSITIONAL CALCULUS

Equivalence and true.

- (3.1) **Axiom, Associativity of** \equiv : $((p \equiv q) \equiv r) \equiv (p \equiv (q \equiv r))$
- (3.2) **Axiom, Symmetry of** \equiv : $p \equiv q \equiv p$
- (3.3) **Axiom, Identity of** \equiv : $true \equiv q \equiv q$
- (3.4) *true*
- (3.5) **Reflexivity of** \equiv : $p \equiv p$

Negation, inequivalence, and false.

- (3.8) **Definition of** $false : false \equiv \neg true$
- (3.9) Axiom, Distributivity of \neg over \equiv : $\neg(p \equiv q) \equiv \neg p \equiv q$
- (3.10) **Definition of** $\not\equiv$: $(p \not\equiv q) \equiv \neg (p \equiv q)$
- $(3.11) \qquad \neg p \equiv q \equiv p \equiv \neg q$
- (3.12) **Double negation:** $\neg \neg p \equiv p$
- (3.13) **Negation of** false: $\neg false \equiv true$
- $(3.14) (p \not\equiv q) \equiv \neg p \equiv q$
- $(3.15) \neg p \equiv p \equiv false$
- (3.16) Symmetry of $\not\equiv$: $(p \not\equiv q) \equiv (q \not\equiv p)$
- (3.17) Associativity of $\not\equiv$: $((p \not\equiv q) \not\equiv r) \equiv (p \not\equiv (q \not\equiv r))$
- (3.18) Mutual associativity: $((p \neq q) \equiv r) \equiv (p \neq (q \equiv r))$
- (3.19) Mutual interchangeability: $p \neq q \equiv r \equiv p \equiv q \neq r$
- $(3.19.1) \quad p \not\equiv p \not\equiv q \ \equiv \ q$

Disjunction.

- (3.24) **Axiom, Symmetry of** \vee : $p \vee q \equiv q \vee p$
- (3.25) Axiom, Associativity of \vee : $(p \vee q) \vee r \equiv p \vee (q \vee r)$
- (3.26) **Axiom, Idempotency of** \vee : $p \vee p \equiv p$
- (3.27) **Axiom, Distributivity of** \vee **over** \equiv : $p \vee (q \equiv r) \equiv p \vee q \equiv p \vee r$
- (3.28) **Axiom, Excluded middle:** $p \lor \neg p$
- (3.29) **Zero of** \vee : $p \vee true \equiv true$
- (3.30) **Identity of** \vee : $p \vee false \equiv p$
- (3.31) **Distributivity of** \vee **over** \vee : $p \vee (q \vee r) \equiv (p \vee q) \vee (p \vee r)$
- $(3.32) p \lor q \equiv p \lor \neg q \equiv p$

Conjunction.

- (3.35) **Axiom, Golden rule:** $p \wedge q \equiv p \equiv q \equiv p \vee q$
- (3.36) **Symmetry of** \wedge : $p \wedge q \equiv q \wedge p$
- (3.37) **Associativity of** \wedge : $(p \wedge q) \wedge r \equiv p \wedge (q \wedge r)$
- (3.38) **Idempotency of** \wedge : $p \wedge p \equiv p$
- (3.39) **Identity of** \wedge : $p \wedge true \equiv p$
- (3.40) **Zero of** \wedge : $p \wedge false \equiv false$

- (3.41) **Distributivity of** \wedge **over** \wedge : $p \wedge (q \wedge r) \equiv (p \wedge q) \wedge (p \wedge r)$
- (3.42) **Contradiction:** $p \land \neg p \equiv false$
- (3.43) **Absorption:**
 - (a) $p \land (p \lor q) \equiv p$
 - (b) $p \lor (p \land q) \equiv p$
- (3.44) **Absorption:**
 - (a) $p \wedge (\neg p \vee q) \equiv p \wedge q$
 - (b) $p \lor (\neg p \land q) \equiv p \lor q$
- (3.45) **Distributivity of** \vee **over** \wedge : $p \vee (q \wedge r) \equiv (p \vee q) \wedge (p \vee r)$
- (3.46) **Distributivity of** \wedge **over** \vee : $p \wedge (q \vee r) \equiv (p \wedge q) \vee (p \wedge r)$
- (3.47) **De Morgan:**
 - (a) $\neg (p \land q) \equiv \neg p \lor \neg q$
 - (b) $\neg (p \lor q) \equiv \neg p \land \neg q$
- $(3.48) p \wedge q \equiv p \wedge \neg q \equiv \neg p$
- $(3.49) p \wedge (q \equiv r) \equiv p \wedge q \equiv p \wedge r \equiv p$
- $(3.50) p \wedge (q \equiv p) \equiv p \wedge q$
- (3.51) **Replacement:** $(p \equiv q) \land (r \equiv p) \equiv (p \equiv q) \land (r \equiv q)$
- (3.52) **Equivalence:** $p \equiv q \equiv (p \land q) \lor (\neg p \land \neg q)$
- (3.53) **Exclusive or:** $p \not\equiv q \equiv (\neg p \land q) \lor (p \land \neg q)$
- $(3.55) (p \land q) \land r \equiv p \equiv q \equiv r \equiv p \lor q \equiv q \lor r \equiv r \lor p \equiv p \lor q \lor r$

Implication.

- (3.57) **Definition of Implication:** $p \Rightarrow q \equiv p \lor q \equiv q$
- (3.58) **Axiom, Consequence:** $p \Leftarrow q \equiv q \Rightarrow p$
- (3.59) **Implication:** $p \Rightarrow q \equiv \neg p \lor q$
- (3.60) **Implication:** $p \Rightarrow q \equiv p \land q \equiv p$
- (3.61) **Contrapositive:** $p \Rightarrow q \equiv \neg q \Rightarrow \neg p$
- $(3.62) p \Rightarrow (q \equiv r) \equiv p \land q \equiv p \land r$
- (3.63) **Distributivity of** \Rightarrow **over** \equiv : $p \Rightarrow (q \equiv r) \equiv (p \Rightarrow q) \equiv (p \Rightarrow r)$
- (3.63.1) **Distributivity of** \Rightarrow **over** \wedge : $p \Rightarrow q \wedge r \equiv (p \Rightarrow q) \wedge (p \Rightarrow r)$
- (3.63.2) **Distributivity of** \Rightarrow **over** \vee : $p \Rightarrow q \lor r \equiv (p \Rightarrow q) \lor (p \Rightarrow r)$
- $(3.64) p \Rightarrow (q \Rightarrow r) \equiv (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$
- (3.65) **Shunting:** $p \land q \Rightarrow r \equiv p \Rightarrow (q \Rightarrow r)$
- $(3.66) p \wedge (p \Rightarrow q) \equiv p \wedge q$
- $(3.67) p \land (q \Rightarrow p) \equiv p$
- (3.68) $p \lor (p \Rightarrow q) \equiv true$
- $(3.69) p \lor (q \Rightarrow p) \equiv q \Rightarrow p$
- $(3.70) p \lor q \Rightarrow p \land q \equiv p \equiv q$
- (3.71) **Reflexivity of** \Rightarrow : $p \Rightarrow p$
- (3.72) **Right zero of** \Rightarrow : $p \Rightarrow true \equiv true$
- (3.73) **Left identity of** \Rightarrow : $true \Rightarrow p \equiv p$
- $(3.74) p \Rightarrow false \equiv \neg p$

$$(3.74.1)$$
 $\neg p \Rightarrow false \equiv p$

$$(3.75)$$
 $false \Rightarrow p \equiv true$

(3.76) Weakening/strengthening:

(a)
$$p \Rightarrow p \lor q$$
 (Weakening the consequent)

(b)
$$p \land q \Rightarrow p$$
 (Strengthening the antecedent)

(c)
$$p \land q \Rightarrow p \lor q$$
 (Weakening/strengthening)

(d)
$$p \lor (q \land r) \Rightarrow p \lor q$$

(e)
$$p \wedge q \Rightarrow p \wedge (q \vee r)$$

(3.76.1)
$$p \land q \Rightarrow p \lor r$$
 (Weakening/strengthening)

$$(3.76.2) \quad (p \Rightarrow q) \Rightarrow ((q \Rightarrow r) \Rightarrow (p \Rightarrow r))$$

(3.77) **Modus ponens:**
$$p \land (p \Rightarrow q) \Rightarrow q$$

(3.77.1) **Modus tollens:**
$$(p \Rightarrow q) \land \neg q \Rightarrow \neg p$$

$$(3.78) (p \Rightarrow r) \land (q \Rightarrow r) \equiv (p \lor q \Rightarrow r)$$

$$(3.79) (p \Rightarrow r) \land (\neg p \Rightarrow r) \equiv r$$

(3.80) **Mutual implication:**
$$(p \Rightarrow q) \land (q \Rightarrow p) \equiv (p \equiv q)$$

(3.81) **Antisymmetry:**
$$(p \Rightarrow q) \land (q \Rightarrow p) \Rightarrow (p \equiv q)$$

(a)
$$(p \Rightarrow q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

(b)
$$(p \equiv q) \land (q \Rightarrow r) \Rightarrow (p \Rightarrow r)$$

(c)
$$(p \Rightarrow q) \land (q \equiv r) \Rightarrow (p \Rightarrow r)$$

(3.82.1) Transitivity of
$$\equiv$$
: $(p \equiv q) \land (q \equiv r) \Rightarrow (p \equiv r)$

$$(3.82.2) \quad (p \equiv q) \Rightarrow (p \Rightarrow q)$$

Leibniz as an axiom.

This section uses the following notation: E_X^z means E[z:=X].

(3.83) **Axiom, Leibniz:**
$$e = f \Rightarrow E_e^z = E_f^z$$

(3.84) **Substitution:**

(a)
$$(e=f) \wedge E_e^z \equiv (e=f) \wedge E_f^z$$

(b)
$$(e=f) \Rightarrow E_e^z \equiv (e=f) \Rightarrow E_f^z$$

(c)
$$q \wedge (e = f) \Rightarrow E_e^z \equiv q \wedge (e = f) \Rightarrow E_f^z$$

(3.85) **Replace by** true:

(a)
$$p \Rightarrow E_p^z \equiv p \Rightarrow E_{true}^z$$

(b)
$$q \wedge p \Rightarrow E_p^z \equiv q \wedge p \Rightarrow E_{true}^z$$

$$(3.86)$$
 Replace by $false$:

(a)
$$E_p^z \Rightarrow p \equiv E_{false}^z \Rightarrow p$$

(b)
$$E_p^z \Rightarrow p \lor q \equiv E_{false}^z \Rightarrow p \lor q$$

(3.87) **Replace by**
$$true: p \wedge E_p^z \equiv p \wedge E_{true}^z$$

(3.88) **Replace by**
$$false: p \lor E_p^z \equiv p \lor E_{false}^z$$

(3.89) **Shannon:**
$$E_p^z \equiv (p \wedge E_{true}^z) \vee (\neg p \wedge E_{false}^z)$$

$$(3.89.1) \quad E_{true}^z \wedge E_{false}^z \Rightarrow E_p^z$$

Additional theorems concerning implication.

- $(4.1) p \Rightarrow (q \Rightarrow p)$
- (4.2) **Monotonicity of** \vee : $(p \Rightarrow q) \Rightarrow (p \lor r \Rightarrow q \lor r)$
- (4.3) **Monotonicity of** \wedge : $(p \Rightarrow q) \Rightarrow (p \land r \Rightarrow q \land r)$

Proof technique metatheorems.

- (4.4) **Deduction (assume conjuncts of antecedent):** To prove $P_1 \wedge P_2 \Rightarrow Q$, assume P_1 and P_2 , and prove Q. You cannot use textual substitution in P_1 or P_2 .
- (4.5) **Case analysis:** If E_{true}^z and E_{false}^z are theorems, then so is E_P^z .
- (4.6) **Case analysis:** $(p \lor q \lor r) \land (p \Rightarrow s) \land (q \Rightarrow s) \land (r \Rightarrow s) \Rightarrow s$
- (4.7) **Mutual implication:** To prove $P \equiv Q$, prove $P \Rightarrow Q$ and $Q \Rightarrow P$.
- (4.7.1) **Truth implication:** To prove P, prove $true \Rightarrow P$.
- (4.9) **Proof by contradiction:** To prove P, prove $\neg P \Rightarrow false$.
- (4.12) **Proof by contrapositive:** To prove $P \Rightarrow Q$, prove $\neg Q \Rightarrow \neg P$.

GENERAL LAWS OF QUANTIFICATION

For symmetric and associative binary operator \star with identity u.

- (8.13) **Axiom, Empty range:** $(\star x \mid false : P) = u$
- (8.14) **Axiom, One-point rule:** Provided $\neg occurs(`x", `E")$, $(\star x \mid x = E : P) = P[x := E]$
- (8.15) **Axiom, Distributivity:** Provided $P, Q : \mathbb{B}$ or R is finite, $(\star x \mid R : P) \star (\star x \mid R : Q) = (\star x \mid R : P \star Q)$
- (8.16) **Axiom, Range split:** Provided $R \wedge S \equiv false$ and $P : \mathbb{B}$ or R and S are finite, $(\star x \mid R \vee S : P) = (\star x \mid R : P) \star (\star x \mid S : P)$
- (8.17) **Axiom, Range split:** Provided $P : \mathbb{B}$ or R and S are finite, $(\star x \mid R \lor S : P) \star (\star x \mid R \land S : P) = (\star x \mid R : P) \star (\star x \mid S : P)$
- (8.18) **Axiom, Range split for idempotent** \star : Provided $P : \mathbb{B}$ or R and S are finite, $(\star x \mid R \lor S : P) = (\star x \mid R : P) \star (\star x \mid S : P)$
- (8.19) **Axiom, Interchange of dummies:** Provided \star is idempotent or R and Q are finite, $\neg occurs(`y", `R"), \neg occurs(`x", `Q"),$ $(\star x \mid R : (\star y \mid Q : P)) = (\star y \mid Q : (\star x \mid R : P))$
- (8.20) **Axiom, nesting:** Provided $\neg occurs(`y", `R")$, $(\star x, y \mid R \land Q : P) = (\star x \mid R : (\star y \mid Q : P))$
- (8.21) **Axiom, Dummy renaming:** Provided $\neg occurs(`y", `R, P")$, $(\star x \mid R: P) = (\star y \mid R[x := y] : P[x := y])$
- (8.22) **Change of dummy:** Provided $\neg occurs(`y", `R, P")$, and f has an inverse, $(\star x \mid R:P) = (\star y \mid R[x:=f.y]:P[x:=f.y])$
- (8.23) **Split off term:** For $n: \mathbb{N}$, (a) $(\star i \mid 0 \le i < n+1 : P) = (\star i \mid 0 \le i < n : P) \star P[i := n]$ (b) $(\star i \mid 0 \le i < n+1 : P) = P[i := 0] \star (\star i \mid 0 < i < n+1 : P)$

THEOREMS OF THE PREDICATE CALCULUS

Universal quantification.

```
Notation: (\star x \mid : P) means (\star x \mid true : P).
```

- (9.2) **Axiom, Trading:** $(\forall x \mid R : P) \equiv (\forall x \mid : R \Rightarrow P)$
- (9.3) Trading:
 - (a) $(\forall x \mid R : P) \equiv (\forall x \mid : \neg R \lor P)$
 - (b) $(\forall x \mid R : P) \equiv (\forall x \mid : R \land P \equiv R)$
 - (c) $(\forall x \mid R : P) \equiv (\forall x \mid : R \lor P \equiv P)$
- (9.4) Trading:
 - (a) $(\forall x \mid Q \land R : P) \equiv (\forall x \mid Q : R \Rightarrow P)$
 - (b) $(\forall x \mid Q \land R : P) \equiv (\forall x \mid Q : \neg R \lor P)$
 - (c) $(\forall x \mid Q \land R : P) \equiv (\forall x \mid Q : R \land P \equiv R)$
 - (d) $(\forall x \mid Q \land R : P) \equiv (\forall x \mid Q : R \lor P \equiv P)$
- (9.4.1) Universal double trading: $(\forall x \mid R : P) \equiv (\forall x \mid \neg P : \neg R)$
- (9.5) **Axiom, Distributivity of** \vee **over** \forall : Provided $\neg occurs(`x", "P")$, $P \vee (\forall x \mid R: Q) \equiv (\forall x \mid R: P \vee Q)$
- (9.6) Provided $\neg occurs('x', 'P'), (\forall x \mid R : P) \equiv P \lor (\forall x \mid : \neg R)$
- (9.7) **Distributivity of** \land **over** \forall : Provided $\neg occurs(`x', `P')$, $\neg(\forall x \mid : \neg R) \Rightarrow ((\forall x \mid R : P \land Q) \equiv P \land (\forall x \mid R : Q))$
- $(9.8) \qquad (\forall x \mid R : true) \equiv true$
- $(9.9) \qquad (\forall x \mid R : P \equiv Q) \Rightarrow ((\forall x \mid R : P) \equiv (\forall x \mid R : Q))$
- (9.10) Range weakening/strengthening: $(\forall x \mid Q \lor R : P) \Rightarrow (\forall x \mid Q : P)$
- (9.11) **Body weakening/strengthening:** $(\forall x \mid R : P \land Q) \Rightarrow (\forall x \mid R : P)$
- (9.12) **Monotonicity of** \forall : $(\forall x \mid R : Q \Rightarrow P) \Rightarrow ((\forall x \mid R : Q) \Rightarrow (\forall x \mid R : P))$
- (9.13) **Instantiation:** $(\forall x \mid : P) \Rightarrow P[x := E]$
- (9.16) **Metatheorem:** P is a theorem iff $(\forall x \mid : P)$ is a theorem.

Existential quantification.

- (9.17) **Axiom, Generalized De Morgan:** $(\exists x \mid R : P) \equiv \neg(\forall x \mid R : \neg P)$
- (9.18) **Generalized De Morgan:**
 - (a) $\neg(\exists x \mid R : \neg P) \equiv (\forall x \mid R : P)$
 - (b) $\neg(\exists x \mid R:P) \equiv (\forall x \mid R:\neg P)$
 - (c) $(\exists x \mid R : \neg P) \equiv \neg(\forall x \mid R : P)$
- (9.19) **Trading:** $(\exists x \mid R : P) \equiv (\exists x \mid : R \land P)$
- (9.20) **Trading:** $(\exists x \mid Q \land R : P) \equiv (\exists x \mid Q : R \land P)$
- (9.20.1) Existential double trading: $(\exists x \mid R : P) \equiv (\exists x \mid P : R)$
- $(9.20.2) \quad (\exists x \mid : R) \Rightarrow ((\forall x \mid R : P) \Rightarrow (\exists x \mid R : P))$
- (9.21) **Distributivity of** \wedge **over** \exists : Provided $\neg occurs(`x", "P")$, $P \wedge (\exists x \mid R : Q) \equiv (\exists x \mid R : P \wedge Q)$

- (9.22) Provided $\neg occurs(`x', `P'), \quad (\exists x \mid R : P) \equiv P \land (\exists x \mid : R)$
- (9.23) **Distributivity of** \lor **over** \exists : Provided $\neg occurs(`x', `P')$, $(\exists x \mid : R) \Rightarrow ((\exists x \mid R : P \lor Q) \equiv P \lor (\exists x \mid R : Q))$
- $(9.24) \quad (\exists x \mid R : false) \equiv false$
- (9.25) Range weakening/strengthening: $(\exists x \mid R : P) \Rightarrow (\exists x \mid Q \lor R : P)$
- (9.26) **Body weakening/strengthening:** $(\exists x \mid R : P) \Rightarrow (\exists x \mid R : P \lor Q)$
- (9.27) **Monotonicity of** \exists : $(\forall x \mid R : Q \Rightarrow P) \Rightarrow ((\exists x \mid R : Q) \Rightarrow (\exists x \mid R : P))$
- (9.28) \exists -Introduction: $P[x := E] \Rightarrow (\exists x \mid : P)$
- (9.29) **Interchange of quantification:** Provided $\neg occurs(`y", `R")$ and $\neg occurs(`x", `Q")$, $(\exists x \mid R : (\forall y \mid Q : P)) \Rightarrow (\forall y \mid Q : (\exists x \mid R : P))$
- (9.30) Provided $\neg occurs(\hat{x}, \hat{Y})$, $(\exists x \mid R : P) \Rightarrow Q$ is a theorem iff $(R \land P)[x := \hat{x}] \Rightarrow Q$ is a theorem.

A THEORY OF SETS

- $(11.2) \quad \{e_0, \dots, e_{n-1}\} = \{x \mid x = e_0 \lor \dots \lor x = e_{n-1} : x\}$
- (11.3) **Axiom, Set membership:** Provided $\neg occurs(`x", `F")$, $F \in \{x \mid R : E\} \equiv (\exists x \mid R : F = E)$
- (11.4) **Axiom, Extensionality:** $S = T \equiv (\forall x \mid : x \in S \equiv x \in T)$
- (11.4.1) **Axiom, Empty set:** $\emptyset = \{x \mid false : E\}$
- (11.4.2) $e \in \emptyset \equiv false$
- (11.4.3) **Axiom, Universe:** $U = \{x \mid : x\}, U: set(t) = \{x : t \mid : x\}$
- (11.4.4) $e \in \mathbf{U} \equiv true$, for e: t and \mathbf{U} : set(t)
- $(11.5) S = \{x \mid x \in S : x\}$
- (11.5.1) **Axiom, Abbreviation:** For x a single variable, $\{x \mid R\} = \{x \mid R : x\}$
- (11.6) Provided $\neg occurs(`y", `R")$ and $\neg occurs(`y", `E")$, $\{x \mid R : E\} = \{y \mid (\exists x \mid R : y = E)\}$
- $(11.7) x \in \{x \mid R\} \equiv R$

R is the characteristic predicate of the set.

- (11.7.1) $y \in \{x \mid R\} \equiv R[x := y]$ for any expression y
- (11.9) $\{x \mid Q\} = \{x \mid R\} \equiv (\forall x \mid : Q \equiv R)$
- (11.10) $\{x \mid Q\} = \{x \mid R\}$ is valid iff $Q \equiv R$ is valid.
- (11.11) Methods for proving set equality S = T:
 - (a) Use Leibniz directly.
 - (b) Use axiom Extensionality (11.4) and prove the (9.8) Lemma $v \in S \equiv v \in T$ for an arbitrary value v.
 - (c) Prove $Q \equiv R$ and conclude $\{x \mid Q\} = \{x \mid R\}$.

Operations on sets.

- (11.12) **Axiom, Size:** $\#S = (\Sigma x \mid x \in S : 1)$
- (11.13) **Axiom, Subset:** $S \subseteq T \equiv (\forall x \mid x \in S : x \in T)$
- (11.14) **Axiom, Proper subset:** $S \subset T \equiv S \subseteq T \land S \neq T$

- (11.15) Axiom, Superset: $T \supseteq S \equiv S \subseteq T$
- (11.16) Axiom, Proper superset: $T \supset S \equiv S \subset T$
- (11.17) **Axiom, Complement:** $v \in \sim S \equiv v \in \mathbf{U} \land v \notin S$
- (11.18) $v \in \sim S \equiv v \notin S$, for v in **U**
- $(11.19) \quad \sim \sim S = S$
- (11.20) **Axiom, Union:** $v \in S \cup T \equiv v \in S \lor v \in T$
- (11.21) **Axiom, Intersection:** $v \in S \cap T \equiv v \in S \land v \in T$
- (11.22) **Axiom, Difference:** $v \in S T \equiv v \in S \land v \notin T$
- (11.23) Axiom, Power set: $v \in PS \equiv v \subseteq S$
- (11.24) **Definition.** Let E_s be a set expression constructed from set variables, \emptyset , \mathbf{U} , \sim , \cup , and \cap . Then E_p is the expression constructed from E_s by replacing: \emptyset with false, \mathbf{U} with true, \cup with \vee , \cap with \wedge , \sim with \neg . The construction is reversible: E_s can be constructed from E_p .
- (11.25) **Metatheorem.** For any set expressions E_s and F_s :
 - (a) $E_s = F_s$ is valid iff $E_p \equiv F_p$ is valid,
 - (b) $E_s \subseteq F_s$ is valid iff $E_p \Rightarrow F_p$ is valid,
 - (c) $E_s = \mathbf{U}$ is valid iff E_p is valid.

Basic properties of \cup .

- (11.26) Symmetry of \cup : $S \cup T = T \cup S$
- (11.27) Associativity of \cup : $(S \cup T) \cup U = S \cup (T \cup U)$
- (11.28) **Idempotency of** \cup : $S \cup S = S$
- (11.29) **Zero of** \cup : $S \cup \mathbf{U} = \mathbf{U}$
- (11.30) **Identity of** \cup : $S \cup \emptyset = S$
- (11.31) Weakening: $S \subseteq S \cup T$
- (11.32) Excluded middle: $S \cup \sim S = \mathbf{U}$

Basic properties of \cap .

- (11.33) **Symmetry of** \cap : $S \cap T = T \cap S$
- (11.34) Associativity of \cap : $(S \cap T) \cap U = S \cap (T \cap U)$
- (11.35) **Idempotency of** \cap : $S \cap S = S$
- (11.36) **Zero of** \cap : $S \cap \emptyset = \emptyset$
- (11.37) **Identity of** \cap : $S \cap \mathbf{U} = S$
- (11.38) **Strengthening:** $S \cap T \subseteq S$
- (11.39) Contradiction: $S \cap \sim S = \emptyset$

Basic properties of combinations of \cup and \cap .

(11.40) **Distributivity of**
$$\cup$$
 over \cap : $S \cup (T \cap U) = (S \cup T) \cap (S \cup U)$

(11.41) **Distributivity of**
$$\cap$$
 over \cup : $S \cap (T \cup U) = (S \cap T) \cup (S \cap U)$

(11.42) **De Morgan:**

(a)
$$\sim (S \cup T) = \sim S \cap \sim T$$

(b)
$$\sim (S \cap T) = \sim S \cup \sim T$$

Additional properties of \cup and \cap .

$$(11.43) \quad S \subseteq T \land U \subseteq V \Rightarrow (S \cup U) \subseteq (T \cup V)$$

$$(11.44) \quad S \subseteq T \land U \subseteq V \Rightarrow (S \cap U) \subseteq (T \cap V)$$

(11.45)
$$S \subseteq T \equiv S \cup T = T$$

(11.46)
$$S \subseteq T \equiv S \cap T = S$$

$$(11.47) \quad S \cup T = \mathbf{U} \equiv (\forall x \mid x \in \mathbf{U} : x \notin S \Rightarrow x \in T)$$

$$(11.48) \quad S \cap T = \emptyset \equiv (\forall x \mid : x \in S \Rightarrow x \notin T)$$

Properties of set difference.

$$(11.49) \quad S - T = S \cap \sim T$$

(11.50)
$$S - T \subseteq S$$

(11.51)
$$S - \emptyset = S$$

$$(11.52) \quad S \cap (T - S) = \emptyset$$

(11.53)
$$S \cup (T - S) = S \cup T$$

(11.54)
$$S - (T \cup U) = (S - T) \cap (S - U)$$

(11.55)
$$S - (T \cap U) = (S - T) \cup (S - U)$$

Implication versus subset.

$$(11.56) \quad (\forall x \mid : P \Rightarrow Q) \equiv \{x \mid P\} \subseteq \{x \mid Q\}$$

Properties of subset.

(11.57) Antisymmetry:
$$S \subseteq T \land T \subseteq S \equiv S = T$$

(11.58) **Reflexivity:**
$$S \subseteq S$$

(11.59) **Transitivity:**
$$S \subseteq T \land T \subseteq U \Rightarrow S \subseteq U$$

$$(11.60) \quad \emptyset \subseteq S$$

$$(11.61) \quad S \subset T \equiv S \subseteq T \land \neg (T \subseteq S)$$

$$(11.62) \quad S \subset T \equiv S \subseteq T \land (\exists x \mid x \in T : x \notin S)$$

(11.63)
$$S \subseteq T \equiv S \subset T \lor S = T$$

(11.64)
$$S \not\subset S$$

(11.65)
$$S \subset T \Rightarrow S \subseteq T$$

$$(11.66) \quad S \subset T \Rightarrow T \nsubseteq S$$

(11.67)
$$S \subseteq T \Rightarrow T \not\subset S$$

(11.68)
$$S \subseteq T \land \neg (U \subseteq T) \Rightarrow \neg (U \subseteq S)$$

- (11.69) $(\exists x \mid x \in S : x \notin T) \Rightarrow S \neq T$
- (11.70) **Transitivity:**
 - (a) $S \subseteq T \land T \subseteq U \Rightarrow S \subseteq U$
 - (b) $S \subset T \land T \subseteq U \Rightarrow S \subset U$
 - (c) $S \subset T \wedge T \subset U \Rightarrow S \subset U$

Theorems concerning power set \mathcal{P} .

- $(11.71) \quad \mathcal{P}\emptyset = \{\emptyset\}$
- $(11.72) \quad S \in \mathcal{P}S$
- (11.73) $\#(\mathcal{P}S) = 2^{\#S}$ (for finite set S)
- (11.76) **Axiom, Partition:** Set S partitions T if
 - (i) the sets in S are pairwise disjoint and
 - (ii) the union of the sets in S is T, that is, if

$$(\forall u, v \mid u \in S \land v \in S \land u \neq v : u \cap v = \emptyset) \land (\cup u \mid u \in S : u) = T$$

Bags.

- (11.79) **Axiom, Membership:** $v \in \{ |x| | R : E \} \equiv (\exists x | R : v = E)$
- (11.80) **Axiom, Size:** $\#\{x \mid R : E\} = (\Sigma x \mid R : 1)$
- (11.81) Axiom, Number of occurrences: $v\#\{\mid x\mid R:E\mid\}=(\Sigma x\mid R\wedge v=E:1)$
- (11.82) Axiom, Bag equality: $B = C \equiv (\forall v \mid : v \# B = v \# C)$
- (11.83) **Axiom, Subbag:** $B \subseteq C \equiv (\forall v \mid : v \# B \le v \# C)$
- (11.84) **Axiom, Proper subbag:** $B \subset C \equiv B \subseteq C \land B \neq C$
- (11.85) **Axiom, Union:** $B \cup C = \{ v, i \mid 0 \le i < v \# B + v \# C : v \} \}$
- (11.86) **Axiom, Intersection:** $B \cap C = \{ v, i \mid 0 \le i < v \# B \downarrow v \# C : v \}$
- (11.87) **Axiom, Difference:** $B C = \{ v, i \mid 0 \le i < v \# B v \# C : v \} \}$

MATHEMATICAL INDUCTION

(12.3) Axiom, Mathematical Induction over \mathbb{N} :

 $(\forall n \colon \mathbb{N} \mid \colon (\forall i \mid 0 \le i < n : P.i) \Rightarrow P.n) \Rightarrow (\forall n \colon \mathbb{N} \mid \colon P.n)$

- (12.4) **Mathematical Induction over** \mathbb{N} : $(\forall n : \mathbb{N} \mid : (\forall i \mid 0 \le i < n : P.i) \Rightarrow P.n) \equiv (\forall n : \mathbb{N} \mid : P.n)$
- (12.5) **Mathematical Induction over** \mathbb{N} : $P.0 \wedge (\forall n : \mathbb{N} \mid : (\forall i \mid 0 \le i \le n : P.i) \Rightarrow P(n+1)) \equiv (\forall n : \mathbb{N} \mid : P.n)$
- (12.11) **Definition,** b to the power n: $b^0 = 1$

$$b^{n+1} = b \cdot b^n \quad \text{ for } n \ge 0$$

(12.12) b to the power n:

$$b^0 = 1$$

$$b^n = b \cdot b^{n-1} \quad \text{ for } n \ge 1$$

(12.13) **Definition, factorial:**

$$0! = 1$$

 $n! = n \cdot (n-1)!$ for $n > 0$

(12.14) **Definition, Fibonacci:**

$$F_0 = 0, \quad F_1 = 1$$

 $F_n = F_{n-1} + F_{n-2} \quad \text{ for } n > 1$

- (12.14.1) **Definition, Golden Ratio:** $\phi = (1 + \sqrt{5})/2 \approx 1.618$ $\hat{\phi} = (1 \sqrt{5})/2 \approx -0.618$
- (12.15) $\phi^2 = \phi + 1$ and $\hat{\phi}^2 = \hat{\phi} + 1$
- (12.16) $F_n \le \phi^{n-1}$ for $n \ge 1$
- $(12.16.1) \phi^{n-2} \le F_n \quad \text{for } n \ge 1$
- (12.17) $F_{n+m} = F_m \cdot F_{n+1} + F_{m-1} \cdot F_n$ for $n \ge 0$ and $m \ge 1$

Inductively defined binary trees.

(12.30) **Definition, Binary Tree:**

 \emptyset is a binary tree, called the empty tree. (d, l, r) is a binary tree, for $d \colon \mathbb{Z}$ and l, r binary trees.

(12.31) **Definition, Number of Nodes:**

$$\#\emptyset = 0$$

 $\#(d, l, r) = 1 + \#l + \#r$

(12.32) **Definition, Height:**

$$height.\emptyset = 0$$

$$height.(d, l, r) = 1 + max(height.l, height.r)$$

- (12.32.1) **Definition, Leaf:** A leaf is a node with no children (i.e. two empty subtrees).
- (12.32.2) **Definition, Internal node:** An internal node is a node that is not a leaf.
- (12.32.3) **Definition, Complete:** A binary tree is complete if every node has either 0 or 2 children.
- (12.33) The maximum number of nodes in a tree with height n is $2^n 1$ for $n \ge 0$.
- (12.34) The minimum number of nodes in a tree with height n is n for $n \ge 0$.
- (12.35) (a) The maximum number of leaves in a tree with height n is 2^{n-1} for n > 0.
 - (b) The maximum number of internal nodes in a tree with height n is $2^{n-1} 1$ for n > 0.
- (12.36) (a) The minimum number of leaves in a tree with height n is 1 for n > 0.
 - (b) The minimum number of internal nodes in a tree with height n is n-1 for n>0.
- (12.37) Every nonempy complete tree has an odd number of nodes.

A THEORY OF PROGRAMS

- (p.1) **Axiom, Excluded miracle:** $wp.S. false \equiv false$
- (p.2) **Axiom, Conjunctivity:** $wp.S.(X \wedge Y) \equiv wp.S.X \wedge wp.S.Y$
- (p.3) **Monotonicity:** $(X \Rightarrow Y) \Rightarrow (wp.S.X \Rightarrow wp.S.Y)$
- (p.4) **Definition, Hoare triple:** $\{Q\} S \{R\} \equiv Q \Rightarrow wp.S.R$
- $(p.4.1) \quad \{wp.S.R\} \ S \ \{R\}$

12

```
Postcondition rule: \{Q\} S \{A\} \land (A \Rightarrow R) \Rightarrow \{Q\} S \{R\}
(p.5)
           Definition, Program equivalence: S = T \equiv (\text{For all } R, wp. S. R \equiv wp. T. R)
(p.6)
           (Q \Rightarrow A) \land \{A\} S \{R\} \Rightarrow \{Q\} S \{R\}
(p.7)
           \{Q0\} S \{R0\} \land \{Q1\} S \{R1\} \Rightarrow \{Q0 \land Q1\} S \{R0 \land R1\}
(p.8)
(p.9)
           \{Q0\} S \{R0\} \land \{Q1\} S \{R1\} \Rightarrow \{Q0 \lor Q1\} S \{R0 \lor R1\}
(p.10)
           Definition, skip: wp.skip.R \equiv R
           \{Q\} \ skip \ \{R\} \ \equiv \ Q \Rightarrow R
(p.11)
(p.12)
           Definition, abort: wp.abort.R \equiv false
(p.13)
           \{Q\} \ abort \ \{R\} \equiv Q \equiv false
(p.14)
           Definition, Composition: wp.(S;T).R \equiv wp.S.(wp.T.R)
           \{Q\} S \{H\} \land \{H\} T \{R\} \Rightarrow \{Q\} S; T \{R\}
(p.15)
           Identity of composition:
(p.16)
                                                          (b) skip; S = S
           (a) S; skip = S
           Zero of composition:
(p.17)
           (a) S; abort = abort
                                                          (b) abort ; S = abort
           Definition, Assignment: wp.(x := E).R \equiv R[x := E]
(p.18)
(p.19)
           Proof method for assignment:
                                                                                      (p.19) is (10.2)
           To show that x := E is an implementation of \{Q\}x := ?\{R\},
           prove Q \Rightarrow R[x := E].
(p.20)
           (x := x) = skip
(p.21)
           IFG:
                                                                                      (p.21) is (10.6)
           if B1 \rightarrow S1
           B2 \rightarrow S2
           \mathbb{R} B3 \to S3
(p.22)
           Definition, IFG: wp.IFG.R \equiv (B1 \lor B2 \lor B3) \land
           B1 \Rightarrow wp.S1.R \land B2 \Rightarrow wp.S2.R \land B3 \Rightarrow wp.S3.R
(p.23)
           Empty guard: if fi = abort
(p.24)
           Proof method for IFG:
                                                                                      (p.24) is (10.7)
           To prove \{Q\}IFG\{R\}, it suffices to prove
           (a) Q \Rightarrow B1 \lor B2 \lor B3,
           (b) \{Q \land B1\} \ S1 \ \{R\},\
           (c) \{Q \land B2\} S2 \{R\}, and
           (d) \{Q \land B3\} S3 \{R\}.
           \neg (B1 \lor B2 \lor B3) \Rightarrow IFG = abort
(p.25)
           One-guard rule: \{Q\} if B \to S fi \{R\} \Rightarrow \{Q\} S \{R\}
(p.26)
           Distributivity of program over alternation:
(p.27)
           if B1 \rightarrow S1; T \parallel B2 \rightarrow S2; T fi = if B1 \rightarrow S1 \parallel B2 \rightarrow S2 fi; T
```

- (p.28) $DO: \operatorname{do} B \to S \operatorname{od}$
- (p.29) Fundamental Invariance Theorem.

(p.29) is (12.43)

Suppose

- $\{P \land B\} S \{P\}$ holds—i.e. execution of S begun in a state in which P and B are true terminates with P true—and
- $\{P\}$ do $B \to S$ od $\{true\}$ —i.e. execution of the loop begun in a state in which P is true terminates.

Then $\{P\}$ do $B \to S$ od $\{P \land \neg B\}$ holds.

(p.30) **Proof method for** DO:

(p.30) is (12.45)

To prove $\{Q\}$ initialization; $\{P\}$ do $B \to S$ od $\{R\}$, it suffices to prove

- (a) P is true before execution of the loop: $\{Q\}$ initialization; $\{P\}$,
- (b) P is a loop invariant: $\{P \land B\} S \{P\}$,
- (c) Execution of the loop terminates, and
- (d) R holds upon termination: $P \land \neg B \Rightarrow R$.
- (p.31) **False guard:** do $false \rightarrow S$ od = skip

RELATIONS AND FUNCTIONS

- (14.2) **Axiom, Pair equality:** $\langle b, c \rangle = \langle b', c' \rangle \equiv b = b' \wedge c = c'$
- (14.2.1) **Ordered pair one-point rule:** Provided $\neg occurs(`x, y", `E, F")$, $(\star x, y \mid \langle x, y \rangle = \langle E, F \rangle : P) = P[x, y := E, F]$
- (14.3) **Axiom, Cross product:** $S \times T = \{b, c \mid b \in S \land c \in T : \langle b, c \rangle \}$
- (14.3.1) Axiom, Ordered pair extensionality: $U = V \equiv (\forall x, y \mid : \langle x, y \rangle \in U \equiv \langle x, y \rangle \in V)$

Theorems for cross product.

- (14.4) **Membership:** $\langle x,y\rangle \in S \times T \equiv x \in S \land y \in T$
- $(14.5) \quad \langle x, y \rangle \in S \times T \equiv \langle y, x \rangle \in T \times S$
- $(14.6) S = \emptyset \Rightarrow S \times T = T \times S = \emptyset$
- $(14.7) S \times T = T \times S \equiv S = \emptyset \lor T = \emptyset \lor S = T$
- (14.8) **Distributivity of** \times **over** \cup :
 - (a) $S \times (T \cup U) = (S \times T) \cup (S \times U)$
 - (b) $(S \cup T) \times U = (S \times U) \cup (T \times U)$
- (14.9) **Distributivity of** \times **over** \cap :
 - (a) $S \times (T \cap U) = (S \times T) \cap (S \times U)$
 - (b) $(S \cap T) \times U = (S \times U) \cap (T \times U)$
- (14.10) **Distributivity of** \times **over** :

$$S \times (T - U) = (S \times T) - (S \times U)$$

- (14.11) **Monotonicity:** $T \subseteq U \Rightarrow S \times T \subseteq S \times U$
- $(14.12) \quad S \subseteq U \land T \subseteq V \implies S \times T \subseteq U \times V$

$$(14.13) \quad S \times T \subseteq S \times U \land S \neq \emptyset \implies T \subseteq U$$

$$(14.14) \quad (S \cap T) \times (U \cap V) = (S \times U) \cap (T \times V)$$

(14.15) For finite S and T,
$$\#(S \times T) = \#S \cdot \#T$$

Relations.

(14.15.1) **Definition, Binary relation:**

A binary relation over $B \times C$ is a subset of $B \times C$.

(14.15.2) **Definition, Identity:** The identity relation i_B on B is $i_B = \{x: B \mid : \langle x, x \rangle \}$

(14.15.3) **Identity lemma:** $\langle x,y\rangle \in i_B \equiv x=y$

(14.15.4) **Notation:** $\langle b, c \rangle \in \rho$ and $b \rho c$ are interchangeable notations.

(14.15.5) Conjunctive meaning: $b \rho c \sigma d \equiv b \rho c \wedge c \sigma d$

The domain $Dom.\rho$ and range $Ran.\rho$ of a relation ρ on $B \times C$ are defined by

(14.16) **Definition, Domain:** $Dom.\rho = \{b: B \mid (\exists c \mid : b \rho c)\}$

(14.17) **Definition, Range:** $Ran.\rho = \{c: C \mid (\exists b \mid : b \rho c)\}$

The $inverse \ \rho^{-1}$ of a relation ρ on $B \times C$ is the relation defined by

(14.18) **Definition, Inverse:** $\langle b, c \rangle \in \rho^{-1} \equiv \langle c, b \rangle \in \rho$, for all b: B, c: C

(14.19) Let ρ and σ be relations.

(a)
$$Dom(\rho^{-1}) = Ran.\rho$$

(b)
$$Ran(\rho^{-1}) = Dom.\rho$$

(c) If
$$\rho$$
 is a relation on $B \times C$, then ρ^{-1} is a relation on $C \times B$

(d)
$$(\rho^{-1})^{-1} = \rho$$

(e)
$$\rho \subseteq \sigma \equiv \rho^{-1} \subseteq \sigma^{-1}$$

Let ρ be a relation on $B \times C$ and σ be a relation on $C \times D$. The *product* of ρ and σ , denoted by $\rho \circ \sigma$, is the relation defined by

(14.20) **Definition, Product:** $\langle b,d\rangle \in \rho \circ \sigma \equiv (\exists c \mid c \in C : \langle b,c\rangle \in \rho \land \langle c,d\rangle \in \sigma)$ or, using the alternative notation by

(14.21) **Definition, Product:** $b(\rho \circ \sigma) d \equiv (\exists c \mid : b \rho c \sigma d)$

Theorems for relation product.

(14.22) **Associativity of**
$$\circ$$
 : $\rho \circ (\sigma \circ \theta) = (\rho \circ \sigma) \circ \theta$

(14.23) **Distributivity of** \circ **over** \cup :

(a)
$$\rho \circ (\sigma \cup \theta) = (\rho \circ \sigma) \cup (\rho \circ \theta)$$

(b)
$$(\sigma \cup \theta) \circ \rho = (\sigma \circ \rho) \cup (\theta \circ \rho)$$

(14.24) **Distributivity of** \circ **over** \cap :

(a)
$$\rho \circ (\sigma \cap \theta) = (\rho \circ \sigma) \cap (\rho \circ \theta)$$

(b)
$$(\sigma \cap \theta) \circ \rho = (\sigma \circ \rho) \cap (\theta \circ \rho)$$

Theorems for powers of a relation.

(14.25) **Definition:**

$$\rho^0 = i_B$$

$$\rho^{n+1} = \rho^n \circ \rho \quad \text{for } n \ge 0$$

(14.26)
$$\rho^m \circ \rho^n = \rho^{m+n}$$
 for $m \ge 0, n \ge 0$

(14.27)
$$(\rho^m)^n = \rho^{m \cdot n}$$
 for $m \ge 0, n \ge 0$

(14.28) For ρ a relation on finite set B of n elements, $(\exists i, j \mid 0 \le i < j \le 2^{n^2} : \rho^i = \rho^j)$

(14.29) Let
$$\rho$$
 be a relation on a finite set B . Suppose $\rho^i=\rho^j$ and $0\leq i< j$. Then (a) $\rho^{i+k}=\rho^{j+k}$ for $k\geq 0$

(b)
$$\rho^i = \rho^{i+p\cdot(j-i)}$$
 for $p \ge 0$

Table 14.1 Classes of relations ρ over set B

	Name	Property	Alternative
(a)	reflexive	$(\forall b \mid: b \rho b)$	$i_B \subseteq \rho$
(b)	irreflexive	$(\forall b \mid: \neg(b \ \rho \ b))$	$i_B \cap \rho = \emptyset$
(c)	symmetric	$(\forall b, c \mid: b \ \rho \ c \ \equiv \ c \ \rho \ b)$	$\rho^{-1} = \rho$
(d)	antisymmetric	$(\forall b, c \mid: b \ \rho \ c \land c \ \rho \ b \Rightarrow b = c)$	$ \rho \cap \rho^{-1} \subseteq i_B $
(e)	asymmetric	$(\forall b, c \mid: b \ \rho \ c \Rightarrow \neg(c \ \rho \ b))$	$\rho \cap \rho^{-1} = \emptyset$
(f)	transitive	$(\forall b, c, d \mid: b \ \rho \ c \land c \ \rho \ d \Rightarrow b \ \rho \ d)$	$\rho = (\cup i \mid i > 0 : \rho^i)$

- (14.30.1) **Definition:** Let ρ be a relation on a set. The *reflexive closure* of ρ is the relation $r(\rho)$ that satisfies:
 - (a) $r(\rho)$ is reflexive;
 - (b) $\rho \subseteq r(\rho)$;
 - (c) If any relation σ is reflexive and $\rho \subseteq \sigma$, then $r(\rho) \subseteq \sigma$.
- (14.30.2) **Definition:** Let ρ be a relation on a set. The *symmetric closure* of ρ is the relation $s(\rho)$ that satisfies:
 - (a) $s(\rho)$ is symmetric;
 - (b) $\rho \subseteq s(\rho)$;
 - (c) If any relation σ is symmetric and $\rho \subseteq \sigma$, then $s(\rho) \subseteq \sigma$.
- (14.30.3) **Definition:** Let ρ be a relation on a set. The *transitive closure* of ρ is the relation ρ^+ that satisfies:
 - (a) ρ^+ is transitive;
 - (b) $\rho \subseteq \rho^+$;
 - (c) If any relation σ is transitive and $\rho \subseteq \sigma$, then $\rho^+ \subseteq \sigma$.
- (14.30.4) **Definition:** Let ρ be a relation on a set. The *reflexive transitive closure* of ρ is the relation ρ^* that is both the reflexive and the transitive closure of ρ .
- (14.31) (a) A reflexive relation is its own reflexive closure.
 - (b) A symmetric relation is its own symmetric closure.
 - (c) A transitive relation is its own transitive closure.

- (14.32) Let ρ be a relation on a set B. Then,
 - (a) $r(\rho) = \rho \cup i_B$
 - (b) $s(\rho) = \rho \cup \rho^{-1}$
 - (c) $\rho^+ = (\cup i \mid 0 < i : \rho^i)$
 - (d) $\rho^* = \rho^+ \cup i_B$

Equivalence relations.

- (14.33) **Definition:** A relation is an *equivalence relation* iff it is reflexive, symmetric, and transitive
- (14.34) **Definition:** Let ρ be an equivalence relation on B. Then $[b]_{\rho}$, the *equivalence class* of b, is the subset of elements of B that are equivalent (under ρ) to b: $x \in [b]_{\rho} \equiv x \rho b$
- (14.35) Let ρ be an equivalence relation on B, and let b, c be members of B. The following three predicates are equivalent:
 - (a) $b \rho c$
 - (b) $[b] \cap [c] \neq \emptyset$
 - (c) [b] = [c]

That is, $(b \rho c) = ([b] \cap [c] \neq \emptyset) = ([b] = [c])$

- (14.35.1) Let ρ be an equivalence relation on B. The equivalence classes partition B.
- (14.36) Let P be the set of sets of a partition of B. The following relation ρ on B is an equivalence relation:

$$b \ \rho \ c \equiv (\exists p \mid p \in P : b \in p \land c \in p)$$

Functions.

- (14.37) (a) **Definition:** A binary relation f on $B \times C$ is *determinate* iff $(\forall b, c, c' \mid b \ f \ c \land b \ f \ c' : c = c')$
 - (b) **Definition:** A binary relation is a *function* iff it is determinate.
- (14.37.1) **Notation:** f.b = c and b f c are interchangeable notations.
- (14.38) **Definition:** A function f on $B \times C$ is *total* if B = Dom.f. Otherwise it is *partial*.

We write $f: B \to C$ for the type of f if f is total and $f: B \leadsto C$ if f is partial.

- (14.38.1) **Total:** A function f on $B \times C$ is total if, for an arbitrary element b: B, $(\exists c : C \mid : f.b = c)$
- (14.39) **Definition, Composition:** For functions f and g, $f \bullet g = g \circ f$.
- (14.40) Let $g: B \to C$ and $f: C \to D$ be total functions. Then the composition $f \bullet g$ of f and g is the total function defined by $(f \bullet g).b = f(g.b)$

 ρ a relation on $B \times C$ f a function, $f: B \to C$

Determinate (14.37)	Total (14.38)
B \bigcirc	$B \bigoplus_{Total} C$
Not determinate: ρ is not a function	Not total (partial)
One-to-one (14.41b) $B \bigoplus_{c} C$ One to one	Onto (14.41a) B Conto
One-to-one	Onto
Not one-to-one	Not onto

Inverses of total functions.

(14.41) **Definitions:**

- (a) Total function $f: B \to C$ is *onto* or *surjective* if Ran.f = C.
- (b) Total function f is one-to-one or injective if $(\forall b, b' \colon B, c \colon C \mid \colon b f c \land b' f c \equiv b = b').$
- (c) Total function f is *bijective* if it is one-to-one and onto.
- (14.42) Let f be a total function, and let f^{-1} be its relational inverse.
 - (a) Then f^{-1} is a function, i.e. is determinate, iff f is one-to-one.
 - (b) And, f^{-1} is total iff f is onto.
- (14.43) **Definitions:** Let $f: B \to C$.
 - (a) A left inverse of f is a function $g: C \to B$ such that $g \bullet f = i_B$.
 - (b) A right inverse of f is a function $g: C \to B$ such that $f \bullet g = i_C$.
 - (c) Function g is an *inverse* of f if it is both a left inverse and a right inverse.
- (14.44) Function $f: B \to C$ is onto iff f has a right inverse.
- (14.45) Let $f: B \to C$ be total. Then f is one-to-one iff f has a left inverse.
- (14.46) Let $f: B \to C$ be total. The following statements are equivalent.
 - (a) f is one-to-one and onto.

- (b) There is a function $q: C \to B$ that is both a left and a right inverse of f.
- (c) f has a left inverse and f has a right inverse.

Order relations.

(14.47) **Definition:** A binary relation ρ on a set B is called a *partial order on b* if it is reflexive, antisymmetric, and transitive. In this case, pair $\langle B, \rho \rangle$ is called a *partially ordered set* or *poset*.

We use the symbol \leq for an arbitrary partial order, sometimes writing $c \succeq b$ instead of $b \leq c$.

- (14.47.1) **Definition, Incomparable:** $incomp(b,c) \equiv \neg(b \leq c) \land \neg(c \leq b)$
- (14.48) **Definition:** Relation \prec is a *quasi order* or *strict partial order* if \prec is transitive and irreflexive
- (14.48.1) **Definition, Reflexive reduction:** Given \preceq , its *reflexive reduction* \prec is computed by eliminating all pairs $\langle b, b \rangle$ from \preceq .
- (14.48.2) Let \prec be the reflexive reduction of \preceq . Then, $\neg (b \preceq c) \equiv c \prec b \lor incomp(b, c)$
- (14.49) (a) If ρ is a partial order over a set B, then ρi_B is a quasi order.
 - (b) If ρ is a quasi order over a set B, then $\rho \cup i_B$ is a partial order.

Total orders and topological sort.

- (14.50) **Definition:** A partial order \preceq over B is called a *total* or *linear* order if $(\forall b, c \mid : b \preceq c \lor b \succeq c)$, i.e. iff $\preceq \cup \preceq^{-1} = B \times B$. In this case, the pair $\langle B, \preceq \rangle$ is called a *linearly ordered set* or a *chain*.
- (14.51) **Definitions:** Let S be a nonempty subset of poset $\langle U, \preceq \rangle$.
 - (a) Element b of S is a minimal element of S if no element of S is smaller than b, i.e. if $b \in S \land (\forall c \mid c \prec b : c \notin S)$.
 - (b) Element b of S is the least element of S if $b \in S \land (\forall c \mid c \in S : b \preceq c)$.
 - (c) Element b is a lower bound of S if $(\forall c \mid c \in S : b \leq c)$. (A lower bound of S need not be in S.)
 - (d) Element b is the greatest lower bound of S, written glb.S if b is a lower bound and if every lower bound c satisfies $c \leq b$.
- (14.52) Every finite nonempty subset S of poset $\langle U, \preceq \rangle$ has a minimal element.
- (14.53) Let B be a nonempty subset of poset $\langle U, \preceq \rangle$.
 - (a) A least element of B is also a minimal element of B (but not necessarily vice versa).
 - (b) A least element of B is also a greatest lower bound of B (but not necessarily vice versa).
 - (c) A lower bound of B that belongs to B is also a least element of B.

- ((14.54) **Definitions:** Let S be a nonempty subset of poset $\langle U, \preceq \rangle$.
 - (a) Element b of S is a maximal element of S if no element of S is larger than b, i.e. if $b \in S \land (\forall c \mid b \prec c : c \notin S)$.
 - (b) Element b of S is the greatest element of S if $b \in S \land (\forall c \mid c \in S : c \leq b)$.
 - (c) Element b is an *upper bound of* S if $(\forall c \mid c \in S : c \leq b)$. (An upper bound of S need not be in S.)
 - (d) Element b is the *least upper bound of* S, written lub.S, if b is an upper bound and if every upper bound c satisfies $b \leq c$.

Relational databases.

- (14.56.1) **Definition, select:** For Relation R and predicate F, which may contain names of fields of R, $\sigma(R, F) = \{t \mid t \in R \land F\}$
- (14.56.2) **Definition, project:** For A_1, \ldots, A_m a subset of the names of the fields of relation R, $\pi(R, A_1, \ldots, A_m) = \{t \mid t \in R : \langle t.A_1, t.A_2, \ldots, t.A_m \rangle \}$
- (14.56.3) **Definition, natural join:** For Relations R1 and R2, $R1 \bowtie R2$ has all the attributes that R1 and R2 have, but if an attribute appears in both, then it appears only once in the result; further, only those tuples that agree on this common attribute are included.

GROWTH OF FUNCTIONS

- (g.1) **Definition of asymptotic upper bound:** For a given function g.n, O(g.n), pronounced "big-oh of g of n", is the set of functions $\{f.n \mid (\exists c, n_0 \mid c > 0 \land n_0 > 0 : (\forall n \mid n \geq n_0 : 0 \leq f.n \leq c \cdot g.n) \}\}$
- (g.2) O-notation: f.n = O(g.n) means function f.n is in the set O(g.n).
- (g.3) **Definition of asymptotic lower bound:** For a given function g.n, $\Omega(g.n)$, pronounced "big-omega of g of n", is the set of functions $\{f.n \mid (\exists c, n_0 \mid c > 0 \land n_0 > 0 : (\forall n \mid n \geq n_0 : 0 \leq c \cdot g.n \leq f.n) \}$
- (g.4) Ω -notation: $f.n = \Omega(g.n)$ means function f.n is in the set $\Omega(g.n)$.
- (g.5) **Definition of asymptotic tight bound:** For a given function g.n, $\Theta(g.n)$, pronounced "big-theta of g of n", is the set of functions $\{f.n \mid (\exists c_1, c_2, n_0 \mid c_1 > 0 \land c_2 > 0 \land n_0 > 0 : (\forall n \mid n \geq n_0 : 0 \leq c_1 \cdot g.n \leq f.n \leq c_2 \cdot g.n))\}$
- (g.6) Θ -notation: $f.n = \Theta(g.n)$ means function f.n is in the set $\Theta(g.n)$.
- (g.7) $f.n = \Theta(g.n)$ if and only if f.n = O(g.n) and $f.n = \Omega(g.n)$

Comparison of functions.

- (g.8) **Reflexivity:**
 - (a) f.n = O(f.n)
 - (b) $f.n = \Omega(f.n)$
 - (c) $f.n = \Theta(f.n)$
- (g.9) Symmetry: $f.n = \Theta(g.n) \equiv g.n = \Theta(f.n)$
- (g.10) **Transpose symmetry:** $f.n = O(g.n) \equiv g.n = \Omega(f.n)$
- (g.11) **Transitivity:**
 - (a) $f.n = O(g.n) \land g.n = O(h.n) \Rightarrow f.n = O(h.n)$
 - (b) $f.n = \Omega(g.n) \land g.n = \Omega(h.n) \Rightarrow f.n = \Omega(h.n)$
 - (c) $f.n = \Theta(g.n) \land g.n = \Theta(h.n) \Rightarrow f.n = \Theta(h.n)$
- (g.12) Define an asymptotically positive polynomial p.n of degree d to be $p.n = (\Sigma i \mid 0 \le i \le d : a_i n^i)$ where the constants a_0, a_1, \ldots, a_d are the coefficients of the polynomial and $a_d > 0$. Then $p.n = \Theta(n^d)$.
- (g.13) (a) $O(1) \subset O(\lg n) \subset O(n) \subset O(n \lg n) \subset O(n^2) \subset O(n^3) \subset O(2^n)$
 - (b) $\Omega(1) \supset \Omega(\lg n) \supset \Omega(n) \supset \Omega(n \lg n) \supset \Omega(n^2) \supset \Omega(n^3) \supset \Omega(2^n)$

A THEORY OF INTEGERS

Minimum and maximum.

- (15.53) **Definition of** \downarrow : $(\forall z \mid : z \leq x \downarrow y \equiv z \leq x \land z \leq y)$ **Definition of** \uparrow : $(\forall z \mid : z \geq x \uparrow y \equiv z \geq x \land z \geq y)$
- (15.54) **Symmetry:**

(a)
$$x \downarrow y = y \downarrow x$$

(b)
$$x \uparrow y = y \uparrow x$$

(15.55) Associativity:

(a)
$$(x \downarrow y) \downarrow z = x \downarrow (y \downarrow z)$$

(b)
$$(x \uparrow y) \uparrow z = x \uparrow (y \uparrow z)$$

Restrictions. Although \downarrow and \uparrow are symmetric and associative, they do not have identities over the integers. Therefore, axiom (8.13) empty range does not apply to \downarrow or \uparrow . Also, when using range-split axioms, no range should be *false*.

(15.56) **Idempotency:**

(a)
$$x \downarrow x = x$$

(b)
$$x \uparrow x = x$$

Divisibility.

(15.77) **Definition of**
$$| : c | b \equiv (\exists d \mid : c \cdot d = b)$$

- (15.78) $c \mid c$
- (15.79) $c \mid 0$
- (15.80) 1 | *b*
- $(15.80.1) b \mid c \equiv b \mid c$
- $(15.80.2) 1 \mid b$

- (15.81) $c \mid 1 \Rightarrow c = 1 \lor c = -1$
- $(15.81.1) c \mid 1 \equiv c = 1 \lor c = -1$
- $(15.82) \quad d \mid c \wedge c \mid b \Rightarrow d \mid b$
- (15.83) $b \mid c \land c \mid b \equiv b = c \lor b = -c$
- $(15.84) \quad b \mid c \Rightarrow b \mid c \cdot d$
- $(15.85) \quad b \mid c \Rightarrow b \cdot d \mid c \cdot d$
- (15.86) $1 < b \land b \mid c \Rightarrow \neg(b \mid (c+1))$
- (15.87) **Theorem:** Given integers b, c with c > 0, there exist (unique) integers q and r such that $b = q \cdot c + r$, where $0 \le r < c$.
- (15.89) **Corollary:** For given b, c, the values q and r of Theorem (15.87) are unique.

Greatest common divisor.

(15.90) Definition of \div and mod for operands b and c, $c \neq 0$:

$$b \div c = q, \ b \bmod c = r$$
 where $b = q \cdot c + r$ and $0 \le r < c$

- $(15.91) \quad b = c \cdot (b \div c) + b \bmod c \quad \text{for } c \neq 0$
- (15.92) **Definition of gcd:**

$$b \ \mathbf{gcd} \ c = (\uparrow d \mid d \mid b \land d \mid c : d) \quad \text{for } b, c \text{ not both } 0$$

$$0 \ \mathbf{gcd} \ 0 = 0$$

(15.94) **Definition of lcm:**

$$\begin{array}{l} b \text{ lcm } c = (\downarrow k \colon \mathbb{Z}^+ \mid b \mid k \wedge c \mid k \colon k) \quad \text{ for } b \neq 0 \text{ and } c \neq 0 \\ b \text{ lcm } c = 0 \quad \text{ for } b = 0 \text{ or } c = 0 \end{array}$$

Properties of gcd.

- (15.96) Symmetry: $b \gcd c = c \gcd b$
- (15.97) Associativity: $(b \gcd c) \gcd d = b \gcd (c \gcd d)$
- (15.98) **Idempotency:** (b gcd b) = abs.b
- (15.99) **Zero:** 1 gcd b = 1
- (15.100) **Identity:** 0 gcd b = abs.b
- (15.101) $b \gcd c = (abs.b) \gcd (abs.c)$
- (15.102) $b \gcd c = b \gcd (b+c) = b \gcd (b-c)$
- $(15.103) \ b = a \cdot c + d \ \Rightarrow \ b \ \mathbf{gcd} \ c = c \ \mathbf{gcd} \ d$
- (15.104) **Distributivity:** $d \cdot (b \gcd c) = (d \cdot b) \gcd (d \cdot c)$ for $0 \le d$
- (15.105) **Definition of relatively prime** \perp : $b \perp c \equiv b \gcd c = 1$
- (15.107) **Inductive definition of gcd:**

$$b \gcd 0 = b$$

$$b \gcd c = c \gcd (b \bmod c)$$

- (15.108) $(\exists x, y \mid : x \cdot b + y \cdot c = b \text{ gcd } c)$ for all $b, c: \mathbb{N}$
- $(15.111) k \mid b \wedge k \mid c \equiv k \mid (b \operatorname{gcd} c)$

COMBINATORIAL ANALYSIS

- (16.1) **Rule of sum:** The size of the union of n (finite) pairwise disjoint sets is the sum of their sizes.
- (16.2) **Rule of product:** The size of the cross product of n sets is the product of their sizes.
- (16.3) **Rule of difference:** The size of a set with a subset of it removed is the size of the set minus the size of the subset.
- (16.4) **Definition:** P(n,r) = n!/(n-r)!
- (16.5) The number of r-permutations of a set of size n equals P(n, r).
- (16.6) The number of r-permutations with repetition of a set of size n is n^r .
- (16.7) The number of permutations of a bag of size n with k distinct elements occurring n_1, n_2, \ldots, n_k times is $\frac{n!}{n_1! \cdot n_2! \cdot \cdots \cdot n_k!}$.
- (16.9) **Definition:** The *binomial coefficient* $\binom{n}{r}$, which is read as "n choose r", is defined by $\binom{n}{r} = \frac{n!}{r! \cdot (n-r)!}$ for $0 \le r \le n$.
- (16.10) The number of r-combinations of n elements is $\binom{n}{r}$.
- (16.11) The number $\binom{n}{r}$ of r-combinations of a set of size n equals the number of permutations of a bag that contains r copies of one object and n-r copies of another.

A THEORY OF GRAPHS

- (19.1) **Definition:** Let V be a finite, nonempty set and E a binary relation on V. Then $G = \langle V, E \rangle$ is called a *directed graph*, or *digraph*. An element of V is called a *vertex*; an element of E is called an *edge*.
- (19.1.1) **Definitions:**
 - (a) In an undirected graph $\langle V, E \rangle$, E is a set of unordered pairs.
 - (b) In a multigraph $\langle V, E \rangle$, E is a bag of undirected edges.
 - (c) The *indegree* of a vertex of a digraph is the number of edges for which it is an end vertex.
 - (d) The *outdegree* of a vertex of a digraph is the number of edges for which it is a start vertex.
 - (e) The *degree* of a vertex is the sum of its indegree and outdegree.
 - (f) An edge $\langle b, b \rangle$ for some vertex b is a self-loop.
 - (g) A digraph with no self-loops is called *loop-free*.
- (19.3) The sum of the degrees of the vertices of a digraph or multigraph equals $2 \cdot \#E$.
- (19.4) In a digraph or multigraph, the number of vertices of odd degree is even.

- (19.4.1) **Definition:** A path has the following properties.
 - (a) A path starts with a vertex, ends with a vertex, and alternates between vertices and edges.
 - (b) Each directed edge in a path is preceded by its start vertex and followed by its end vertex. An undirected edge is preceded by one of its vertices and followed by the other.
 - (c) No edge appears more than once.

(19.4.2) **Definitions:**

- (a) A *simple* path is a path in which no vertex appears more than once, except that the first and last vertices may be the same.
- (b) A *cycle* is a path with at least one edge, and with the first and last vertices the same.
- (c) An undirected multigraph is *connected* if there is a path between any two vertices.
- (d) A digraph is *connected* if making its edges undirected results in a connected multigraph.
- (19.6) If a graph has a path from vertex b to vertex c, then it has a simple path from b to c.

(19.6.1) **Definitions:**

- (a) An *Euler path* of a multigraph is a path that contains each edge of the graph exactly once.
- (b) An Euler circuit is an Euler path whose first and last vertices are the same.
- (19.8) An undirected connected multigraph has an Euler circuit iff every vertex has even degree.

(19.8.1) **Definitions:**

- (a) A *complete graph* with n vertices, denoted by K_n , is an undirected, loop-free graph in which there is an edge between every pair of distinct vertices.
- (b) A *bipartite graph* is an undirected graph in which the set of vertices are partitioned into two sets *X* and *Y* such that each edge is incident on one vertex in *X* and one vertex in *Y*.
- (19.10) A path of a bipartate graph is of even length iff its ends are in the same partition element
- (19.11) A connected graph is bipartate iff every cycle has even length.
- (19.11.1) **Definition:** A complete bipartate graph $K_{m,n}$ is a bipartite graph in which one partition element X has m vertices, the other partition element Y has n vertices, and there is an edge between each vertex of X and each vertex of Y.

(19.11.2) **Definitions:**

- (a) A *Hamilton path* of a graph or digraph is a path that contains each vertex exactly once, except that the end vertices of the path may be the same.
- (b) A Hamilton circuit is a Hamilton path that is a cycle.

Natural Science Division, Pepperdine University, Malibu, CA 90263 *E-mail address*: Stan.Warford@pepperdine.edu

URL: http://www.cslab.pepperdine.edu/warford/